On Multiple Populations of Sunspot Group Numbers

Leif Svalgaard
Stanford University

Sept. 2019

For ISSI 417, Bern
The Backbone Method, pro et con

- Limited to observers with long-term [and good] records in order to get a good enough regression [selection effects?]
- How to deal with non-linear regressions [if any] and with missing data
- No accumulation of errors within the backbone [only one comparison with the primary observer, i.e. no daisy chaining]
- Possibility of undetected intra-backbone drifts
- Refusal of some people to grasp the basic idea
- Each backbone can be treated as an independent unit: changes to one do not impact the others
- Because several observers contribute to each average [e.g. yearly or monthly], error bars can be estimated
- A small (about 3) number of backbones limits the effect of daisy chaining from one to the next, especially if the ‘middle’ one is chosen as the reference scale, so don’t have many ‘mini’-backbones
- Each solar minimum [with almost no spots] provides a ‘reset’ of the errors preventing the oft claimed run-away ‘monotonic’ increase with time
- Constructing a backbone is a fair amount of work, e.g. with quality control
- There are probably more cons…

This talk will show that none of the above matters
An Example: RGO Group Number Backbone

Sunspot Group Number with Monthly Resolution
The Simple Average of ALL Observers is as Good as Our Carefully Constructed Backbones

Observer #418 (MWO Central Disk) is, of course, omitted.

As already remarked in S&S16 “It is remarkable that the average number of groups by all observers with no normalization at all closely matches the number of groups reported by H&S showing that their elaborate and obscure normalization procedures have almost no effect on the result.”

This is also true for our backbones, meaning that we could simply dispense with the normalization with its perceived potential problems.
Schwabe Sunspot Group Number Backbone

<table>
<thead>
<tr>
<th>Year</th>
<th>Schwabe</th>
<th>all raw</th>
<th>Pastoroff</th>
<th>Stark</th>
<th>Schmidt</th>
<th>Shea</th>
<th>Wolf ST</th>
<th>Wolf BT</th>
<th>Carrington</th>
<th>Howlet</th>
<th>Weber</th>
<th>Peters</th>
<th>Sporer</th>
<th>Meyer</th>
<th>DeLaRue</th>
</tr>
</thead>
<tbody>
<tr>
<td>1790</td>
<td>43</td>
<td>51</td>
<td>11</td>
<td>11</td>
<td>36</td>
<td>19</td>
<td>42</td>
<td>7</td>
<td>8</td>
<td>15</td>
<td>25</td>
<td>11</td>
<td>33</td>
<td>6</td>
<td>3</td>
</tr>
</tbody>
</table>

Average of all observers

Schwabe Backbone

![Schwabe Backbone Chart](chart.png)
The Simple Average of ALL Observers is as Good as Our Carefully Constructed Backbones

This holds also for the Schwabe Backbone. When the number of observations runs in the thousands, the statistical errors get very small.

So, it seems that we have a nice non-parametric, non-overlapping, non-k-value regression, no selection effect, no ranking, no pairwise comparison, no ADF- or PDF-based, non-whatever method for constructing a backbone including estimating its time-varying error bars [from the spread of the observations]
class groups(min_obs):
 """ Extract data from Group database."""

def get_data():
 """ Read the table of input values."""

def sf(f, width=6, decs=2):
 """ Format floating point number."""
 if f == f:
 form = "{:.{}f}".format(f)
 return(form).rjust(width)
 else:
 return(" NaN".center(width-1))

def si(i, width=6):
 """ Format small integer number."""
 return(str(i).rjust(width))

def print_avg(year, gsum, gnbr, pop):
 """ print yearly averages."""
 ysum = ynbr = 0
 for m in range(1,13):
 if gnbr[m] > min_obs:
 ynbr += gnbr[m]; ysum += gsum[m]

import statistics as st
if ynbr:
 gavg = ysum / ynbr
 err = st.pstdev(pop)/ynbr**0.5
else:
 gavg = err = float("NaN")

print(year, si(ynbr), sf(gavg), sf(err))

Sample Input:

> 2010 12 20 633 1 0
> 2010 12 20 639 1 0
> 2010 12 20 675 1 0
> 2010 12 20 685 1 2
> 2010 12 20 688 1 1
> 2010 12 20 693 1 0
> 2010 12 21 505 1 1

José et al. maintain the current database [as a text file] with all observers’ daily group count.
The Code Tells Exactly What Was Done.
Wish that All Analyses were so Explained

PATH = "C:/gsn/
DB = PATH+"GN-D"+.TXT" # José Vaquero's daily database
lyear = 0

for line in open(DB, 'r'):
 words = line.split()
 if len(words):
 if words[0].isdigit():
 year = int(words[0])
 if year > lyear:
 if lyear: print_avg(lyear, gs, gn, pop)
 gn = [0]*13; gs = [0]*13; pop = []
 lyear = year

 station = int(words[3])
 if station != 418: # Omit MWO Center of disk
 month = int(words[1])
 groups = int(words[5])
 if groups > -1:
 gn[month] += 1
 gs[month] += groups
 pop.append(groups)

 print_avg(lyear, gs, gn, pop)

print_avg(lyear, gs, gn, pop)

Sample Output:

<table>
<thead>
<tr>
<th>Year</th>
<th>N</th>
<th><GN></th>
<th>stderr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>20309</td>
<td>9.52</td>
<td>0.03</td>
</tr>
<tr>
<td>1991</td>
<td>20181</td>
<td>9.86</td>
<td>0.02</td>
</tr>
<tr>
<td>1992</td>
<td>20789</td>
<td>6.61</td>
<td>0.02</td>
</tr>
<tr>
<td>1993</td>
<td>20886</td>
<td>3.89</td>
<td>0.01</td>
</tr>
<tr>
<td>1994</td>
<td>21665</td>
<td>2.42</td>
<td>0.01</td>
</tr>
<tr>
<td>1995</td>
<td>21638</td>
<td>1.39</td>
<td>0.01</td>
</tr>
<tr>
<td>1996</td>
<td>19501</td>
<td>0.62</td>
<td>0.01</td>
</tr>
<tr>
<td>1997</td>
<td>19419</td>
<td>1.54</td>
<td>0.01</td>
</tr>
<tr>
<td>1998</td>
<td>17590</td>
<td>4.68</td>
<td>0.02</td>
</tr>
<tr>
<td>1999</td>
<td>17834</td>
<td>6.48</td>
<td>0.02</td>
</tr>
<tr>
<td>2000</td>
<td>16154</td>
<td>8.66</td>
<td>0.03</td>
</tr>
<tr>
<td>2001</td>
<td>14334</td>
<td>8.83</td>
<td>0.03</td>
</tr>
<tr>
<td>2002</td>
<td>14358</td>
<td>8.56</td>
<td>0.02</td>
</tr>
<tr>
<td>2003</td>
<td>16701</td>
<td>5.30</td>
<td>0.02</td>
</tr>
<tr>
<td>2004</td>
<td>16227</td>
<td>3.44</td>
<td>0.01</td>
</tr>
<tr>
<td>2005</td>
<td>15714</td>
<td>2.52</td>
<td>0.01</td>
</tr>
<tr>
<td>2006</td>
<td>14500</td>
<td>1.49</td>
<td>0.01</td>
</tr>
<tr>
<td>2007</td>
<td>15814</td>
<td>0.74</td>
<td>0.01</td>
</tr>
<tr>
<td>2008</td>
<td>15136</td>
<td>0.28</td>
<td>0.00</td>
</tr>
<tr>
<td>2009</td>
<td>14193</td>
<td>0.32</td>
<td>0.00</td>
</tr>
<tr>
<td>2010</td>
<td>15141</td>
<td>1.61</td>
<td>0.01</td>
</tr>
</tbody>
</table>

groups.get_data(5)
Spörer Backbone Around Cycle 11

Cycle 11 is large
The Simple Average of ALL Observers is as Good as Our Carefully Constructed Backbones

For the RGO and Schwabe Raw [ALL] averages we were lucky that the two ‘observers’ [RGO and Schw.] evidently were [seeing and] reporting group numbers close to the typical [and hence average] observers of their time:

But it doesn’t have to be so for all our backbone observers. Spörer is an example, seeing slightly more [reddish curve] than the average observer.
Before 1881, Spörer’s group count was 4% larger than average, but abruptly that changed by 1881 so that Spörer’s count became increasingly smaller than average as time went on. The simplest explanation would be that Spörer changed his telescope and/or his way of counting groups. On the other hand, other backbones show the same discontinuity around 1881, suggestive of the (at first sight unlikely) possibility that observers at large after 1880 were using better telescopes and/or had developed a better understanding of what is a group.

The difference between Spörer and the overall average seems to increase with time after 1880.
The 1881 Discontinuity

Schwabe Backbone GN vs. Plain Average Group Number

- *Yearly Values 1800-1893*
 - \(y = 0.9332x + 0.0004 \)
 - \(R^2 = 0.9931 \)

- *1800-1880*
 - \(y = 0.8018x + 0.061 \)
 - \(R^2 = 0.8897 \)

Raw Average GN of ALL Observations

Sporer Backbone GN vs. Plain Average Group Number (Full)

- *1841-1880*
 - \(y = 1.0333x + 0.2074 \)
 - \(R^2 = 0.9993 \)

- *1881-1928*
 - \(y = 0.7768x + 0.1225 \)
 - \(R^2 = 0.9833 \)

Raw Average GN of ALL Observations

Wolfer Backbone GN vs. Plain Average Group Number

- *1860-1880*
 - \(y = 1.47x - 0.1566 \)
 - \(R^2 = 0.9972 \)

- *1881-1940*
 - \(y = 1.0154x + 0.2341 \)
 - \(R^2 = 0.9786 \)

Raw Average GN of ALL Observations
More Backbones vs. Raw Averages

Locarno Backbone GN vs. Plain Average Group Number
- Yearly Values 1950-2016
- Raw Average
- Calibrated Backbone GN
- \(y = 1.1604x + 0.0463 \)
- \(R^2 = 0.9988 \)
- Slightly Unstable

Koyama Backbone GN vs. Plain Average Group Number
- Yearly Values 1920-1996
- 1956-1996
- 1920-1955
- Raw Average
- Calibrated Backbone GN
- \(y = 1.0338x + 0.1525 \)
- \(R^2 = 0.9962 \)
- Slightly Unstable

S&S 2016 Backbones vs. Plain Average Group Number
- Yearly Values 1810-2010
- 1810-1880
- 1881-2010
- Raw Average
- Calibrated Backbone GN
- \(y = 1.3863x + 0.4643 \)
- \(R^2 = 0.976 \)
- \(y = 1.0078x + 0.1847 \)
- \(R^2 = 0.99 \)
The Diurnal Variation of the Direction of the Magnetic Needle

George Graham [London] discovered [1722] that the geomagnetic field varied during the day in a regular manner.
Determining EUV Flux from the magnetic effect of dynamo currents in the E-region of the ionosphere.

The physics of the boxes is generally well-known.

We can determine the EUV from the magnetic effects...
Already Julius Bartels (1946) emphasized the importance of the diurnal variation: "The correlations between R and his W (wave-radiation)… are the closest found so far between solar and terrestrial phenomena"
W-index, Rz, rY and GN Correlations
Reconstructions of EUV and F10.7

Reconstruction of F10.7 Flux and EUV < 103 nm Flux

F10.7 = (rY/4.00)^2
EUV = (rY/21.55)^2
R^2 = 0.98

Reconstruction of EUV < 103 nm Flux

EUV = [(2.02 GN + 33)/21.55]^2
EUV = 0.02 SN + 2.28
EUV mW/m^2
The Schwabe, Spörer, and RGO backbones overlap with the anchor Wolfer Backbone and can thus be scaled to that reference Backbone. The scaling is found to be linear to high accuracy. The new composite is statistically indistinguishable from the published S&S 2016 composite.

The four individual new backbones each have the same relationship with the geomagnetic diurnal range variation [at left with different colors].
Choose the Lesser Miracle

Any researcher \(nn \) who claims he has a method to dowse or divinate solar activity can express his result as a time series of Group Numbers (GN[\(nn \)]), or equivalently of Sunspot numbers (SN[\(nn \)]), with yearly resolution. GN derived from the diurnal variation (GN[\(rY \)]) as shown on the previous slide are the values we would expect, assuming that the terrestrial response has not undergone a dramatic [\(\sim 40\% \)] change in 1881. So we must expect GN[\(nn \)] \(\approx \) GN[\(rY \)] within their respective error bars. If it is not, we have two possibilities:

A: Researcher \(nn \) is mistaken and his method does not work as claimed, or
B: The response of the terrestrial upper atmosphere to solar activity changed dramatically in 1881 (this would be an unexpected, new solar-terrestrial effect)

David Hume (in Section X of *Enquiry Concerning Human Understanding* [1748]) argued that a rational person should never believe that a miracle (he is using the word ‘miracle’ in the everyday sense, meaning something that is merely out of the ordinary) had actually taken place unless it would be a greater miracle that the person reporting the miracle (i.e. that GN[\(nn \)] is not \(\approx \) GN[\(rY \)]) is simply mistaken. We should always believe whatever would be the lesser miracle, which in our case would be choice A.
The Diurnal Variation Shows the 1881 Discontinuity Very Clearly

We see the same two populations: one before 1881 and one after ~1910 with a transitional period 1881-1910. This means that one cannot assume the statistical properties of the latter population to hold about the former.

The ratio between slopes is 1.39
The different populations are the result both of evolving technology, e.g. achromatic lenses, and of improved understanding of the definition of a group (blue curve). The diurnal variation (reddish curves) of the East component of the geomagnetic field relies primarily on measurements of an angle [the Declination] and as such does not require calibration and thus does not evolve with time. We speculatively identify four populations as shown above.

Because of the evolving populations, the backbones themselves [no matter how constructed] must be normalized to a common standard [Wolfer’s].
Construct Telescopes with the Same Flaws as Typical 18th Century Ones

Briggs, NM

Spencer, NY

Stephani, Germany
Modern Observers See Three Times as Many Spots as The Old Telescopes Show
It is clear the series before, say, 1750 needs more work
Conclusions

• There are [at least] two different ‘populations’ of sunspot group counts by observers over time. One cannot blindly assume the statistical properties of one population to hold about the other. Speculatively we identify four populations the last 400 years.

• One major population belongs to years before 1881 followed by another major one after ~1915, separated by a transitional period between 1881 and ~1915. The major populations differ by ~40%. The difference is poorly understood, but may be due to evolving telescope technology and/or increasing understanding of what constitutes a group.

• The average number of groups over a year by all observers with no normalization at all closely matches (i.e. are proportional to) the yearly numbers of groups in backbones constructed within each population showing that elaborate normalization procedures have almost no effect on the result. This means that we can dispense with the normalization altogether; although adjacent, overlapping backbone segments still have to be stitched together by par-wise comparison.

• So, it seems that we have a nice non-parametric, non-overlapping, non-k-value-regression, no selection effect, no ranking, no pair-wise comparison, no ADF- or PDF-based, non-whatever method for constructing a backbone segment including estimating its time-varying error bars [from the spread of the observations].

• We can determine the EUV Flux from the magnetic effect of dynamo currents in the E-region of the ionosphere on the diurnal variation of the geomagnetic East Component. The variation and the group numbers are linearly related to high accuracy and individual backbones each have the same relationship with the geomagnetic diurnal range variation allowing a single composite to be constructed. The new composite is statistically indistinguishable from the published Svalgaard & Schatten 2016 series.

• Constructing and using replica telescopes with the same flaws as typical 18th century ones (chromatic and spherical aberrations) show that modern observers see three times as many spots as the old telescopes, yielding an independent calibration of the scale.