Astronomische Mittheilungen

von

Dr. Rudolf Wolf.

LXXXII. Beobachtungen der Sonnenflecken im Jahre 1892, sowie Berechnung der Relativzahlen und Variationen dieses Jahres, und Mittheilung einiger betreffender Vergleichungen; Variationsreihen und Formeln für Genua und Bombay; Fortsetzungen der Sonnenfleckenliteratur und des Sammlungsverzeichnisses.

Die Häufigkeit der Sonnenflecken konnte von mir im Jahre 1892 an 278 Tagen mit den bisher dafür gebrauchten Handfernrohren beobachtet werden; die dadurch erhaltenen Daten finden sich unter Nr. 664 der Literatur eingetragen und dienten, unter Anwendung des früheren Faktors 1,50, zur Bildung einer ersten Reihe von Relativzahlen. Ausser ihnen lagen noch 265 Beobachtungen vor, welche Herr Professor Wolfer am Fraunhofer'schen Viervüffser und ausnahmsweise mit dem früher von mir benutzten Pariser-Fernrohr erhalten hatte und sich unter Nr. 665 der Literatur eingetragen finden: Für diejenigen am Viervüffser wurde aus correspondierenden Beobachtungen für das erste Quartal aus 117 Einzelwerthen der Faktor 0,64 zweite » » 130 » » » 0,62 dritte » » 126 » » » 0,60 vierte » » 98 » » » 0,64 abgeleitet, — für die übrigen der Faktor 1,50 benutzt, — aus ihnen eine neue Reihe von Relativzahlen gebildet, —

Juni 1893.

*
Tägliche Fleckenstände im Jahre 1892.

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
<th>IX</th>
<th>X</th>
<th>XI</th>
<th>XII</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>85*</td>
<td>72</td>
<td>21*</td>
<td>34</td>
<td>54</td>
<td>111</td>
<td>27</td>
<td>121</td>
<td>50</td>
<td>105</td>
<td>92</td>
<td>105*</td>
</tr>
<tr>
<td>2</td>
<td>109</td>
<td>64*</td>
<td>16*</td>
<td>37</td>
<td>78</td>
<td>97</td>
<td>36</td>
<td>132</td>
<td>66</td>
<td>105</td>
<td>94*</td>
<td>114*</td>
</tr>
<tr>
<td>3</td>
<td>107</td>
<td>70</td>
<td>14</td>
<td>30</td>
<td>88</td>
<td>82</td>
<td>37</td>
<td>127</td>
<td>51</td>
<td>117</td>
<td>94</td>
<td>128*</td>
</tr>
<tr>
<td>4</td>
<td>75*</td>
<td>54</td>
<td>25</td>
<td>33</td>
<td>72</td>
<td>66*</td>
<td>63</td>
<td>127</td>
<td>58</td>
<td>129</td>
<td>84</td>
<td>134*</td>
</tr>
<tr>
<td>5</td>
<td>77</td>
<td>80*</td>
<td>29</td>
<td>25</td>
<td>92*</td>
<td>33</td>
<td>70</td>
<td>110</td>
<td>44*</td>
<td>134</td>
<td>83</td>
<td>156</td>
</tr>
<tr>
<td>6</td>
<td>46*</td>
<td>70*</td>
<td>32</td>
<td>46</td>
<td>57</td>
<td>34</td>
<td>63</td>
<td>80</td>
<td>20</td>
<td>92</td>
<td>57*</td>
<td>183</td>
</tr>
<tr>
<td>7</td>
<td>53*</td>
<td>63*</td>
<td>29</td>
<td>46</td>
<td>82</td>
<td>49</td>
<td>80</td>
<td>76</td>
<td>66*</td>
<td>78</td>
<td>48*</td>
<td>77</td>
</tr>
<tr>
<td>8</td>
<td>54*</td>
<td>66</td>
<td>23</td>
<td>51</td>
<td>63</td>
<td>52</td>
<td>122</td>
<td>82</td>
<td>21</td>
<td>75</td>
<td>47</td>
<td>108</td>
</tr>
<tr>
<td>9</td>
<td>33*</td>
<td>68</td>
<td>31*</td>
<td>51</td>
<td>52</td>
<td>59</td>
<td>123</td>
<td>89</td>
<td>59*</td>
<td>75</td>
<td>51</td>
<td>112</td>
</tr>
<tr>
<td>10</td>
<td>40</td>
<td>81</td>
<td>39</td>
<td>47</td>
<td>48</td>
<td>63</td>
<td>121</td>
<td>105</td>
<td>57</td>
<td>64</td>
<td>51</td>
<td>116</td>
</tr>
<tr>
<td>11</td>
<td>18</td>
<td>105</td>
<td>48</td>
<td>57</td>
<td>52</td>
<td>66</td>
<td>109</td>
<td>105</td>
<td>73</td>
<td>39</td>
<td>47*</td>
<td>94</td>
</tr>
<tr>
<td>12</td>
<td>22*</td>
<td>115</td>
<td>54</td>
<td>71</td>
<td>49</td>
<td>63</td>
<td>79</td>
<td>126</td>
<td>67</td>
<td>35*</td>
<td>31*</td>
<td>104*</td>
</tr>
<tr>
<td>13</td>
<td>17</td>
<td>122</td>
<td>39</td>
<td>50</td>
<td>49</td>
<td>79*</td>
<td>87</td>
<td>128</td>
<td>65</td>
<td>39</td>
<td>46</td>
<td>59*</td>
</tr>
<tr>
<td>14</td>
<td>42*</td>
<td>120</td>
<td>50*</td>
<td>37</td>
<td>63</td>
<td>58</td>
<td>81</td>
<td>129</td>
<td>72</td>
<td>73*</td>
<td>41</td>
<td>45</td>
</tr>
<tr>
<td>15</td>
<td>79</td>
<td>132*</td>
<td>40</td>
<td>33</td>
<td>69</td>
<td>54</td>
<td>62</td>
<td>144</td>
<td>70</td>
<td>61*</td>
<td>46</td>
<td>49*</td>
</tr>
<tr>
<td>16</td>
<td>90</td>
<td>130</td>
<td>33</td>
<td>29</td>
<td>68</td>
<td>77*</td>
<td>55</td>
<td>144</td>
<td>45</td>
<td>30</td>
<td>53</td>
<td>34*</td>
</tr>
<tr>
<td>17</td>
<td>78</td>
<td>118*</td>
<td>61</td>
<td>48</td>
<td>57</td>
<td>95</td>
<td>86*</td>
<td>113</td>
<td>42</td>
<td>45</td>
<td>56</td>
<td>33*</td>
</tr>
<tr>
<td>18</td>
<td>102</td>
<td>113</td>
<td>48</td>
<td>61</td>
<td>53</td>
<td>82</td>
<td>97</td>
<td>119</td>
<td>44</td>
<td>64*</td>
<td>59</td>
<td>17</td>
</tr>
<tr>
<td>19</td>
<td>114</td>
<td>91</td>
<td>34</td>
<td>68*</td>
<td>66</td>
<td>121</td>
<td>101</td>
<td>105</td>
<td>56</td>
<td>63*</td>
<td>60</td>
<td>18</td>
</tr>
<tr>
<td>20</td>
<td>108*</td>
<td>100</td>
<td>54</td>
<td>89</td>
<td>67</td>
<td>117</td>
<td>61</td>
<td>95</td>
<td>64</td>
<td>75</td>
<td>54*</td>
<td>12</td>
</tr>
<tr>
<td>21</td>
<td>115*</td>
<td>79</td>
<td>68</td>
<td>110</td>
<td>77</td>
<td>129</td>
<td>34*</td>
<td>132</td>
<td>58</td>
<td>76*</td>
<td>37</td>
<td>35</td>
</tr>
<tr>
<td>22</td>
<td>82</td>
<td>67</td>
<td>73</td>
<td>121</td>
<td>84</td>
<td>116</td>
<td>28</td>
<td>124</td>
<td>60</td>
<td>84</td>
<td>62*</td>
<td>43*</td>
</tr>
<tr>
<td>23</td>
<td>98*</td>
<td>44</td>
<td>82</td>
<td>163</td>
<td>98</td>
<td>118</td>
<td>42</td>
<td>126</td>
<td>60</td>
<td>90</td>
<td>72*</td>
<td>45*</td>
</tr>
<tr>
<td>24</td>
<td>87*</td>
<td>56</td>
<td>84</td>
<td>166</td>
<td>112</td>
<td>90</td>
<td>54</td>
<td>80</td>
<td>67</td>
<td>50*</td>
<td>78</td>
<td>87*</td>
</tr>
<tr>
<td>25</td>
<td>75</td>
<td>35</td>
<td>98</td>
<td>135</td>
<td>89</td>
<td>96</td>
<td>78</td>
<td>67*</td>
<td>74</td>
<td>42*</td>
<td>70</td>
<td>95*</td>
</tr>
<tr>
<td>26</td>
<td>64</td>
<td>18</td>
<td>97</td>
<td>101</td>
<td>102</td>
<td>82</td>
<td>90</td>
<td>86</td>
<td>82</td>
<td>18</td>
<td>65</td>
<td>83*</td>
</tr>
<tr>
<td>27</td>
<td>49*</td>
<td>24</td>
<td>92</td>
<td>125</td>
<td>77</td>
<td>88</td>
<td>60</td>
<td>96</td>
<td>18</td>
<td>81</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>48*</td>
<td>18</td>
<td>67</td>
<td>105</td>
<td>133</td>
<td>61</td>
<td>90</td>
<td>77</td>
<td>94</td>
<td>50</td>
<td>86*</td>
<td>91*</td>
</tr>
<tr>
<td>29</td>
<td>65*</td>
<td>18</td>
<td>72*</td>
<td>79</td>
<td>119</td>
<td>51</td>
<td>104</td>
<td>60</td>
<td>99*</td>
<td>73</td>
<td>110</td>
<td>77*</td>
</tr>
<tr>
<td>30</td>
<td>34</td>
<td>46*</td>
<td>71*</td>
<td>129</td>
<td>18</td>
<td>100</td>
<td>65</td>
<td>104</td>
<td>92</td>
<td>106</td>
<td>67*</td>
<td></td>
</tr>
</tbody>
</table>

Mittel 69,1 75,6 49,9 69,6 79,6 76,3 76,8 101,4 62,8 70,5 65,4 78,6
und sodann aus beiden Reihen eine Mittelreihe erstellt, deren Zahlen sich in Tab. I ohne weitere Bezeichnung eingetragen finden. — Es blieben nun im ersten Semester noch 34, im zweiten Semester noch 40 Tage übrig, an welchen weder Herr Wolfer noch ich Beobachtungen erhalten hatten, und zur Ausfüllung dieser Lücken wurden nun in folgender Weise die Reihen verwendet, welche ich der gefälligen Mittheilung aus Catania, Haverford, Jena, Kalocsa, Kremsmünster, Madrid, Moncalieri, O-Gyalla, Paris, Philadelphia und Rom verdanke, und nach der Zeitfolge ihres Einganges unter Nr. 676, 673, 668, 675, 672, 671, 677, 669, 666, 670 und 678 eingetragen habe: Zuerst wurden für diese eifl Hülfserien durch Vergleichung mit der Zürcher Mittelreihe die Reduktionsfaktoren abgeleitet, und so die in nachstehendem Tafelchen (wo n die Anzahl der Vergleichungen und f die Mittel der sich daraus ergebenden Faktoren bezeichnet) enthaltenen Werthe gefunden:

<table>
<thead>
<tr>
<th>Ort</th>
<th>Erstes Semester</th>
<th>Zweites Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n $\mid f$</td>
<td>n $\mid f$</td>
</tr>
<tr>
<td>Catania</td>
<td>115 0,68</td>
<td>118 0,65</td>
</tr>
<tr>
<td>Haverford</td>
<td>98 0,71</td>
<td>91 0,64</td>
</tr>
<tr>
<td>Jena</td>
<td>106 0,86</td>
<td>91 0,79</td>
</tr>
<tr>
<td>Kalocsa</td>
<td>105 0,89</td>
<td>94 0,97</td>
</tr>
<tr>
<td>Kremsmünster</td>
<td>92 0,97</td>
<td>86 0,90</td>
</tr>
<tr>
<td>Madrid</td>
<td>84 0,62</td>
<td>98 0,65</td>
</tr>
<tr>
<td>Moncalieri</td>
<td>91 1,20</td>
<td>76 1,21</td>
</tr>
<tr>
<td>O-Gyalla</td>
<td>53 1,43</td>
<td>67 1,46</td>
</tr>
<tr>
<td>Paris</td>
<td>126 0,53</td>
<td>58 0,62</td>
</tr>
<tr>
<td>Philadelphia</td>
<td>125 0,63</td>
<td>139 0,65</td>
</tr>
<tr>
<td>Rom</td>
<td>112 0,96</td>
<td>126 0,99</td>
</tr>
</tbody>
</table>

0 2 7 11 13 18 10 8 4 2 0 Tage
1 2 3 4 5 6 7 8 9 10 11 fach deckten, — und trug endlich die für die einzelnen dieser Tage erhaltenen Mittelwerthe unter Beisetzung eines * in Tab. I ein, zugleich je das definitive Monatmittel berechnend und beischreibend. — In Tab. II finden sich, entsprechend wie in den Vorjahren, für jede der oben besprochenen drei Stufen unter I (Wolf), II (Wolf + Wolfer), III (Wolf + Wolfer + Ausland) sowohl für jeden Monat als für das Jahr die Anzahl m der als fleckenfrei notierten Tage, die Anzahl n der sämtlichen Beobachtungstage und die erhaltene mittlere Relativzahl r eingetragen; dagegen unterlasse ich es auch diesmal wieder detaillierte Betrachtungen über diese Tafel anzustellen, da ich nur mehrfach Gesagtes zu wiederholen hätte, und beschränke mich darauf aufmerksam zu machen, dass das Jahr 1892 keine fleckenfreien Tage mehr ergab, während 1891 noch bei 18 derselben zählte, — und dass entsprechend das Jahresmittel der Relativzahlen gegenüber dem Vorjahre sich mehr als verdoppelte, indem es (vgl. III) von 35,5 auf 73,0 anstieg. Es darf somit das Jahr 1892, welches das 46. Jahr meiner eigenen Sonnenfleckenbeobachtungen, das 144. Jahr meiner Reihe der monatlichen Relativzahlen und das
Wolf, astronomische Mittheilungen.

Monatliche Fleckenstände im Jahre 1892. Tab. II.

<table>
<thead>
<tr>
<th>1892</th>
<th>I</th>
<th>II</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>m</td>
<td>n</td>
<td>r</td>
</tr>
<tr>
<td>Januar</td>
<td>0</td>
<td>14</td>
<td>78,6</td>
</tr>
<tr>
<td>Februar</td>
<td>0</td>
<td>23</td>
<td>70,6</td>
</tr>
<tr>
<td>März</td>
<td>0</td>
<td>24</td>
<td>52,7</td>
</tr>
<tr>
<td>April</td>
<td>0</td>
<td>28</td>
<td>72,5</td>
</tr>
<tr>
<td>Mai</td>
<td>0</td>
<td>29</td>
<td>79,9</td>
</tr>
<tr>
<td>Juni</td>
<td>0</td>
<td>23</td>
<td>70,3</td>
</tr>
<tr>
<td>Juli</td>
<td>0</td>
<td>28</td>
<td>78,2</td>
</tr>
<tr>
<td>August</td>
<td>0</td>
<td>30</td>
<td>102,6</td>
</tr>
<tr>
<td>September</td>
<td>0</td>
<td>24</td>
<td>63,4</td>
</tr>
<tr>
<td>Oktober</td>
<td>0</td>
<td>22</td>
<td>73,9</td>
</tr>
<tr>
<td>November</td>
<td>0</td>
<td>20</td>
<td>71,7</td>
</tr>
<tr>
<td>Dezember</td>
<td>1</td>
<td>13</td>
<td>82,5</td>
</tr>
</tbody>
</table>

Jahr | 1 | 278 | 74,7 | 0 | 291 | 73,8 | 0 | 366 | 73,0

Wolf, astronomische Mittheilungen.

Tafel der Epochen und Periodenlängen. Tab. III.

<table>
<thead>
<tr>
<th>Minima</th>
<th>Maxima</th>
</tr>
</thead>
<tbody>
<tr>
<td>E'</td>
<td>E''</td>
</tr>
<tr>
<td>P'</td>
<td>P''</td>
</tr>
<tr>
<td>p'</td>
<td>p''</td>
</tr>
<tr>
<td>$\Delta P'$</td>
<td>$\Delta P''$</td>
</tr>
<tr>
<td>1609,8</td>
<td>1615,5</td>
</tr>
<tr>
<td>1619,0</td>
<td>1626,0</td>
</tr>
<tr>
<td>1634,0</td>
<td>1639,5</td>
</tr>
<tr>
<td>1645,0</td>
<td>1649,0</td>
</tr>
<tr>
<td>1655,0</td>
<td>1660,0</td>
</tr>
<tr>
<td>1666,0</td>
<td>1675,0</td>
</tr>
<tr>
<td>1679,5</td>
<td>1685,0</td>
</tr>
<tr>
<td>1689,5</td>
<td>1693,0</td>
</tr>
<tr>
<td>1698,9</td>
<td>1705,5</td>
</tr>
<tr>
<td>1712,0</td>
<td>1718,2</td>
</tr>
<tr>
<td>1723,5</td>
<td>1727,5</td>
</tr>
<tr>
<td>1734,0</td>
<td>1738,7</td>
</tr>
<tr>
<td>1745,0</td>
<td>1750,3</td>
</tr>
<tr>
<td>1755,2</td>
<td>1761,5</td>
</tr>
<tr>
<td>1766,5</td>
<td>1769,7</td>
</tr>
<tr>
<td>1777,5</td>
<td>1778,4</td>
</tr>
<tr>
<td>1784,7</td>
<td>1788,1</td>
</tr>
<tr>
<td>1798,3</td>
<td>1804,2</td>
</tr>
<tr>
<td>1810,6</td>
<td>1816,4</td>
</tr>
<tr>
<td>1823,3</td>
<td>1829,9</td>
</tr>
<tr>
<td>1833,9</td>
<td>1837,2</td>
</tr>
<tr>
<td>1843,5</td>
<td>1848,1</td>
</tr>
<tr>
<td>1856,0</td>
<td>1860,1</td>
</tr>
<tr>
<td>1867,2</td>
<td>1870,6</td>
</tr>
<tr>
<td>1878,9</td>
<td>1883,9</td>
</tr>
</tbody>
</table>

Wolf, astronomische Mittheilungen. 43

\[n' = 24 \quad n'' = 24 \quad n = 48 \]
\[\Sigma p' = 21 \quad \Sigma p'' = 21.5 \quad \Sigma p = 42.5 \]
\[\Sigma p' \cdot AP'' = 236.90 \quad \Sigma p'' \cdot AP'' = 242.60 \quad \Sigma p \cdot AP = 479.50 \]
\[\Sigma p' \cdot AP''^2 = 50.02 \quad \Sigma p'' \cdot AP''^2 = 95.48 \quad \Sigma p \cdot AP^2 = 145.50 \]
\[M' = \frac{236.90}{21} = 11.321 \quad M'' = \frac{242.60}{21.5} = 11.284 \quad M = \frac{479.50}{42.5} = 11.282 \]

\[f' = \sqrt{\frac{50.02}{23}} = \pm 1.475 \quad f'' = \sqrt{\frac{95.48}{23}} = \pm 2.037 \quad f = \sqrt{\frac{145.50}{47}} = \pm 1.759 \]
\[\Delta M' = \sqrt{\frac{50.02}{23.21}} = \pm 0.322 \quad \Delta M'' = \sqrt{\frac{95.48}{23.21.5}} = \pm 0.439 \quad \Delta M = \sqrt{\frac{145.50}{47.42.5}} = \pm 0.270 \]

Es beträgt somit die mittlere Schwankung der Periode bei 1$3/4$ Jahre, und als eine notwendige Folge dieses für die Natur der Erscheinung charakteristischen Verhältnisses zeigt noch gegenwärtig die mittlere Länge derselben eine Unsicherheit von mehr als $\frac{1}{4}$ Jahr: Es erscheint mir daher als verfrüht, ja eher schädlich als nützlich, schon jetzt von der bis dahin angenommenen Länge von 11$\frac{1}{9}$ Jahren abgehen und ihr z. B. 11$\frac{1}{9}$ Jahre substituieren zu wollen.

Der für das Jahr 1892 oben abgeleiteten mittleren Relativzahl
\[r = 73.0 \quad \text{entspricht} \quad \Delta v = 0.045, r = 3'29 \]
und es sollte sich somit im mittleren Europa die magnetische Deklinationsvariation 1892 im Jahresmittel um 3'29 über ihren geringsten Werth oder über die für

Christiania 4',62 . . . nach XXXV
Prag 5',89 " XXXV
Wien 5',42 " LXXVII
Mailand 5',62 " XXXVIII

betragende örtliche Konstante meiner Formeln erhoben haben. Die betreffenden Rechnungen und Vergleichungen sind in Tab. IV zusammengestellt: Der obere Theil dieser
Vergleichung der Fleckenstände und Variationen. Tab. IV.

<table>
<thead>
<tr>
<th>1892</th>
<th>r</th>
<th>Δv</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Christiania</td>
</tr>
<tr>
<td>Beob.</td>
<td>73,0</td>
<td>—</td>
<td>7,36</td>
</tr>
<tr>
<td>Ber.</td>
<td>—</td>
<td>3,29</td>
<td>7,91</td>
</tr>
<tr>
<td>Diff.</td>
<td>—</td>
<td>—</td>
<td>-0,55</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1891/92</th>
<th>dr</th>
<th>dv'</th>
<th>dv''</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Christiania</td>
</tr>
<tr>
<td>I</td>
<td>55,6</td>
<td>2,50</td>
<td>0,85</td>
</tr>
<tr>
<td>II</td>
<td>53,4</td>
<td>2,40</td>
<td>0,84</td>
</tr>
<tr>
<td>III</td>
<td>39,5</td>
<td>1,78</td>
<td>3,59</td>
</tr>
<tr>
<td>IV</td>
<td>49,1</td>
<td>2,21</td>
<td>3,92</td>
</tr>
<tr>
<td>V</td>
<td>38,5</td>
<td>1,73</td>
<td>-1,76</td>
</tr>
<tr>
<td>VI</td>
<td>28,0</td>
<td>1,26</td>
<td>2,99</td>
</tr>
<tr>
<td>VII</td>
<td>18,0</td>
<td>0,51</td>
<td>0,26</td>
</tr>
<tr>
<td>VIII</td>
<td>68,2</td>
<td>3,07</td>
<td>0,26</td>
</tr>
<tr>
<td>IX</td>
<td>9,0</td>
<td>0,40</td>
<td>0,83</td>
</tr>
<tr>
<td>X</td>
<td>19,0</td>
<td>0,85</td>
<td>0,72</td>
</tr>
<tr>
<td>XI</td>
<td>23,5</td>
<td>1,06</td>
<td>-0,01</td>
</tr>
<tr>
<td>XII</td>
<td>46,4</td>
<td>2,09</td>
<td>1,09</td>
</tr>
<tr>
<td>Jahr</td>
<td>37,5</td>
<td>1,69</td>
<td>1,05</td>
</tr>
</tbody>
</table>

Tafel enthält ausser den für 1892 soeben gegebenen Werthen von r und Δv und den in Christiania laut Nr. 674 der Literatur, in Prag laut Nr. 679, in Wien laut Nr. 680 und in Mailand laut Nr. 667 aus den Beobachtungen hervorgegangenen Jahresmitteln v der täglichen Deklinationsvariation die von mir in oben angegebener Weise berechneten Werthe derselben, sowie die Differenzen zwischen den beobachteten und berechneten Beträgen; der untere Theil enthält dagegen für jeden Monat, sowie für das ganze Jahr einerseits die Zunahmen dr, welche die Monatmittel der Relativzahlen des Jahres 1892 gegenüber denjenigen der gleichnamigen Monate des Jahres 1891 zeigen, und die daraus nach der Formel $dv' =$

Durch gütige Mittheilungen der Herren Direktoren Charles Chambers in Colomba bei Bombay und Pietro Maria Garibaldi in Genua habe ich wieder mehrere werthvolle Variationsreihen erhalten, welche ich in Tab. V—VII nebst den von mir daraus abgeleiteten Reihen folgen lasse. Die Tab. V enthält nämlich (mit Ausnahme der den sechs letzten Monaten des Jahres 1872 zugehörenden Zahlen 12,0 10,5 14,8 13,2 9,0 3,0 welche ich glaubte in derselben unterdrücken, dagegen
Wolf, astronomische Mittheilungen.

Genua: Beobachtete Declinationsvariationen.

Tab. V.

<table>
<thead>
<tr>
<th>Jahr</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
<th>IX</th>
<th>X</th>
<th>XI</th>
<th>XII Mitt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1873</td>
<td>7,37</td>
<td>7,11</td>
<td>11,72</td>
<td>13,90</td>
<td>10,18</td>
<td>11,47</td>
<td>10,84</td>
<td>10,06</td>
<td>9,52</td>
<td>8,60</td>
<td>6,25</td>
<td>4,47</td>
</tr>
<tr>
<td>1874</td>
<td>6,23</td>
<td>7,69</td>
<td>9,77</td>
<td>11,47</td>
<td>9,88</td>
<td>9,35</td>
<td>9,77</td>
<td>8,61</td>
<td>9,25</td>
<td>8,03</td>
<td>5,29</td>
<td>4,92</td>
</tr>
<tr>
<td>1875</td>
<td>4,63</td>
<td>4,55</td>
<td>8,08</td>
<td>10,62</td>
<td>8,80</td>
<td>8,89</td>
<td>8,15</td>
<td>8,29</td>
<td>7,83</td>
<td>6,44</td>
<td>4,91</td>
<td>4,26</td>
</tr>
<tr>
<td>1876</td>
<td>4,44</td>
<td>4,62</td>
<td>7,09</td>
<td>9,50</td>
<td>6,87</td>
<td>8,80</td>
<td>9,01</td>
<td>8,07</td>
<td>7,32</td>
<td>7,16</td>
<td>4,86</td>
<td>3,84</td>
</tr>
<tr>
<td>1877</td>
<td>4,16</td>
<td>4,46</td>
<td>6,89</td>
<td>8,33</td>
<td>7,31</td>
<td>7,90</td>
<td>8,41</td>
<td>7,56</td>
<td>7,00</td>
<td>7,04</td>
<td>5,02</td>
<td>3,32</td>
</tr>
<tr>
<td>1878</td>
<td>3,98</td>
<td>4,61</td>
<td>6,95</td>
<td>8,59</td>
<td>7,48</td>
<td>8,95</td>
<td>7,46</td>
<td>7,47</td>
<td>7,09</td>
<td>6,30</td>
<td>3,98</td>
<td>4,11</td>
</tr>
<tr>
<td>1879</td>
<td>4,19</td>
<td>4,79</td>
<td>6,85</td>
<td>7,73</td>
<td>7,94</td>
<td>8,22</td>
<td>8,27</td>
<td>8,40</td>
<td>7,96</td>
<td>7,06</td>
<td>4,60</td>
<td>3,66</td>
</tr>
<tr>
<td>1880</td>
<td>3,88</td>
<td>4,96</td>
<td>7,99</td>
<td>10,61</td>
<td>7,85</td>
<td>8,70</td>
<td>8,96</td>
<td>10,29</td>
<td>9,71</td>
<td>8,83</td>
<td>6,59</td>
<td>4,25</td>
</tr>
<tr>
<td>1881</td>
<td>4,19</td>
<td>6,71</td>
<td>9,21</td>
<td>10,01</td>
<td>9,23</td>
<td>11,02</td>
<td>9,81</td>
<td>10,10</td>
<td>10,82</td>
<td>9,07</td>
<td>6,28</td>
<td>5,45</td>
</tr>
<tr>
<td>1882</td>
<td>4,05</td>
<td>6,85</td>
<td>9,16</td>
<td>11,74</td>
<td>11,95</td>
<td>9,42</td>
<td>8,19</td>
<td>9,69</td>
<td>10,11</td>
<td>9,20</td>
<td>7,73</td>
<td>4,82</td>
</tr>
<tr>
<td>1883</td>
<td>5,76</td>
<td>6,47</td>
<td>9,64</td>
<td>11,71</td>
<td>8,94</td>
<td>10,44</td>
<td>9,36</td>
<td>9,60</td>
<td>10,74</td>
<td>10,88</td>
<td>6,80</td>
<td>4,71</td>
</tr>
<tr>
<td>1884</td>
<td>6,09</td>
<td>8,94</td>
<td>11,74</td>
<td>12,28</td>
<td>9,45</td>
<td>10,63</td>
<td>8,64</td>
<td>8,60</td>
<td>10,53</td>
<td>9,29</td>
<td>6,95</td>
<td>5,35</td>
</tr>
<tr>
<td>1885</td>
<td>4,86</td>
<td>6,37</td>
<td>9,48</td>
<td>10,80</td>
<td>12,28</td>
<td>12,35</td>
<td>12,29</td>
<td>11,90</td>
<td>10,60</td>
<td>8,31</td>
<td>6,10</td>
<td>4,02</td>
</tr>
<tr>
<td>1886</td>
<td>5,99</td>
<td>6,06</td>
<td>9,77</td>
<td>11,02</td>
<td>11,26</td>
<td>10,31</td>
<td>9,80</td>
<td>9,52</td>
<td>8,20</td>
<td>8,66</td>
<td>5,79</td>
<td>4,80</td>
</tr>
<tr>
<td>1887</td>
<td>5,37</td>
<td>5,90</td>
<td>8,10</td>
<td>10,29</td>
<td>10,46</td>
<td>9,79</td>
<td>10,51</td>
<td>10,07</td>
<td>9,10</td>
<td>6,95</td>
<td>5,26</td>
<td>4,62</td>
</tr>
<tr>
<td>1888</td>
<td>4,91</td>
<td>5,71</td>
<td>7,79</td>
<td>9,59</td>
<td>8,84</td>
<td>9,21</td>
<td>9,34</td>
<td>10,02</td>
<td>8,62</td>
<td>7,84</td>
<td>4,98</td>
<td>3,51</td>
</tr>
<tr>
<td>1889</td>
<td>3,96</td>
<td>4,96</td>
<td>6,46</td>
<td>7,94</td>
<td>8,80</td>
<td>7,93</td>
<td>7,37</td>
<td>7,77</td>
<td>7,23</td>
<td>6,74</td>
<td>4,71</td>
<td>3,93</td>
</tr>
<tr>
<td>1890</td>
<td>4,29</td>
<td>5,38</td>
<td>8,07</td>
<td>9,70</td>
<td>7,91</td>
<td>8,41</td>
<td>6,79</td>
<td>7,68</td>
<td>7,74</td>
<td>7,15</td>
<td>4,59</td>
<td>3,56</td>
</tr>
<tr>
<td>1891</td>
<td>3,99</td>
<td>4,94</td>
<td>9,28</td>
<td>11,34</td>
<td>10,44</td>
<td>10,11</td>
<td>10,42</td>
<td>10,55</td>
<td>10,39</td>
<td>9,89</td>
<td>6,60</td>
<td>3,88</td>
</tr>
<tr>
<td>1892</td>
<td>5,58</td>
<td>6,59</td>
<td>10,91</td>
<td>12,49</td>
<td>10,13</td>
<td>10,76</td>
<td>11,96</td>
<td>11,66</td>
<td>9,64</td>
<td>10,32</td>
<td>6,73</td>
<td>4,95</td>
</tr>
</tbody>
</table>

bei Erstellung von VI benutzen zu sollen) die mir von Herrn Professor Garibaldi zugekommenen Monat- und Jahresmittel der in Genua bestimmten täglichen Declinationsvariationen, — die Tab. VI dagegen die von mir in der gewohnten Weise (vgl. Mitth. XXXIII u. f.) aus jenen Monatmitteln durch Ausgleichung erstellte Reihe und die entsprechenden Jahresmittel. Letzterer Reihe ist zu entnehmen, dass in Genua die Declinationsvariation von 1873 hinweg ziemlich regelmässig abnahm, bis sie 1878,9 einen kleinsten Werth erreichte, — dass sie sodann bis 1883,9 wieder zunahm und, nach einer kleinen Einsenkung im Laufe des Jahres 1884, etwa 1885,2 ein zweites Maximum
Wolf, astronomische Mittheilungen.

Genua: Ausgeglichene Declinationsvariationen. Tab. VI.

<table>
<thead>
<tr>
<th>Jahr</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
<th>IX</th>
<th>X</th>
<th>XI</th>
<th>XII</th>
<th>Mitt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1874</td>
<td>8.63</td>
<td>8.53</td>
<td>8.46</td>
<td>8.42</td>
<td>8.36</td>
<td>8.34</td>
<td>8.29</td>
<td>8.09</td>
<td>7.89</td>
<td>7.78</td>
<td>7.70</td>
<td>7.64</td>
<td>8.18</td>
</tr>
<tr>
<td>1875</td>
<td>7.55</td>
<td>7.47</td>
<td>7.40</td>
<td>7.27</td>
<td>7.19</td>
<td>7.15</td>
<td>7.11</td>
<td>7.11</td>
<td>7.07</td>
<td>6.98</td>
<td>6.85</td>
<td>6.77</td>
<td>7.16</td>
</tr>
<tr>
<td>1880</td>
<td>7.02</td>
<td>7.12</td>
<td>7.28</td>
<td>7.46</td>
<td>7.06</td>
<td>7.77</td>
<td>7.81</td>
<td>7.89</td>
<td>8.02</td>
<td>8.05</td>
<td>8.08</td>
<td>8.24</td>
<td>7.70</td>
</tr>
<tr>
<td>1881</td>
<td>8.37</td>
<td>8.40</td>
<td>8.43</td>
<td>8.45</td>
<td>8.40</td>
<td>8.44</td>
<td>8.49</td>
<td>8.49</td>
<td>8.56</td>
<td>8.74</td>
<td>8.79</td>
<td>8.50</td>
<td>5.00</td>
</tr>
<tr>
<td>1882</td>
<td>8.66</td>
<td>8.57</td>
<td>8.53</td>
<td>8.50</td>
<td>8.57</td>
<td>8.60</td>
<td>8.65</td>
<td>8.70</td>
<td>8.71</td>
<td>8.72</td>
<td>8.60</td>
<td>8.52</td>
<td>8.61</td>
</tr>
<tr>
<td>1883</td>
<td>8.60</td>
<td>8.65</td>
<td>8.67</td>
<td>8.77</td>
<td>8.80</td>
<td>8.76</td>
<td>8.77</td>
<td>8.88</td>
<td>9.07</td>
<td>9.19</td>
<td>9.23</td>
<td>9.02</td>
<td>5.00</td>
</tr>
<tr>
<td>1886</td>
<td>8.87</td>
<td>8.66</td>
<td>8.46</td>
<td>8.38</td>
<td>8.38</td>
<td>8.40</td>
<td>8.41</td>
<td>8.37</td>
<td>8.30</td>
<td>8.20</td>
<td>8.13</td>
<td>8.08</td>
<td>8.39</td>
</tr>
<tr>
<td>1887</td>
<td>8.09</td>
<td>8.14</td>
<td>8.20</td>
<td>8.16</td>
<td>8.07</td>
<td>8.04</td>
<td>8.02</td>
<td>7.99</td>
<td>7.97</td>
<td>7.93</td>
<td>7.83</td>
<td>7.74</td>
<td>8.02</td>
</tr>
<tr>
<td>1888</td>
<td>7.66</td>
<td>7.61</td>
<td>7.59</td>
<td>7.61</td>
<td>7.63</td>
<td>7.68</td>
<td>7.58</td>
<td>7.49</td>
<td>7.42</td>
<td>7.33</td>
<td>7.21</td>
<td>7.14</td>
<td>7.08</td>
</tr>
<tr>
<td>1890</td>
<td>6.77</td>
<td>6.74</td>
<td>6.76</td>
<td>6.80</td>
<td>6.81</td>
<td>6.79</td>
<td>6.77</td>
<td>6.73</td>
<td>6.76</td>
<td>6.88</td>
<td>7.05</td>
<td>7.23</td>
<td>6.54</td>
</tr>
<tr>
<td>1891</td>
<td>7.45</td>
<td>7.72</td>
<td>7.95</td>
<td>8.18</td>
<td>8.21</td>
<td>8.47</td>
<td>8.55</td>
<td>8.09</td>
<td>8.22</td>
<td>8.94</td>
<td>8.97</td>
<td>8.99</td>
<td>8.42</td>
</tr>
</tbody>
</table>

erhielt, — dass sie hinauf bis 1889,5 wieder successive kleiner wurde, — und dass sie endlich von diesem Zeitpunkt hinweg bis zum Schlusse der Serie fortwährend wieder anwuchs. Die sich auf diese Weise aus den Variationen in Genua ergebenden zwei Minimums-Epochen 1878,9 und 1889,5 stimmen nun vortrefflich mit den von mir aus der Sonnenflecken-Häufigkeit abgeleiteten Minimums-Epochen 1878,9 und 1889,6 überein, und auch der erste der für die zwischenliegende Maximums-Epobe erhaltenen Werthe, nämlich 1883,9
fällt mit der aus den Sonnenflecken abgeleiteten Epoche vollständig zusammen; dagegen ist eine zweite, auf 1885,2 fallende Maximums-Epoche weder in der Reihe der Relativzahlen, noch (vgl. Mitth. LXXVII) in den Variationsreihen aller übrigen Stationen auch nur angedeutet, so dass sie als ein Produkt lokaler Einflüsse irgend welcher Art betrachtet werden muss und somit für die allgemeinen kosmischen Verhältnisse als nicht vorhanden anzusehen ist. — Die Tab. VII enthält zunächst die mir von Herrn Direktor Chambers übersandten drei Reihen \(v_1, v_2 \) und \(v_3 \) der Jahresmittel der in Bombay beobachteten Declinationsvariationen, welche zusammen die 43 Jahre 1846–88 beschlagen: Die durch Herrn Chambers mit «Including disturbances» überschriebene Reihe \(v_1 \) stimmt mit der von mir schon in Mitth. XXVI aufgenommenen und berechneten Reihe bis auf den Umstand zusammen, dass ich jetzt alle Werthe auf zwei Dezimalen abgekürzt habe, um sie in dieser Richtung mit der grossen Mehrzahl der übrigen Variationsreihen conform zu machen. Die neue, von Herrn Chambers mit «Excluding disturbances» überschriebene Reihe \(v_2 \) gründet sich auf dieselben, mit einem oberirdisch aufgestellten Magnetometer von Grubbs erst zweistündlich, von 1848 VII an aber ständig angestellten Beobachtungen, welchen auch die \(v_1 \) entnommen waren; nur wurden für sie nach der Methode von Sabine die \(\pm 1.4 \) übersteigenden Störungen so gut als möglich ausgeschieden. Die wieder mit «Including disturbances» überschriebene Reihe \(v_3 \) endlich stützt sich auf Beobachtungen mit einem unterirdisch aufgestellten Magnetographen, und zwar sind bei denselben bis jetzt die mühsamen und (wie mir scheinen will), etwas willkürlichen Sabine’schen Ausscheidungen
Declinationsvariationen in Bombay und Genna. Tab. VII.

<table>
<thead>
<tr>
<th>Jahr</th>
<th>(r)</th>
<th>Bombay</th>
<th>Genna</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(v_1)</td>
<td>(v_1')</td>
<td>(v_2)</td>
</tr>
<tr>
<td>1846</td>
<td>61,5</td>
<td>2°,95</td>
<td>3°,10</td>
</tr>
<tr>
<td>47</td>
<td>98,4</td>
<td>3,32</td>
<td>3,11</td>
</tr>
<tr>
<td>48</td>
<td>124,3</td>
<td>3°,49</td>
<td>3°,58</td>
</tr>
<tr>
<td>49</td>
<td>95,9</td>
<td>3,25</td>
<td>3,30</td>
</tr>
<tr>
<td>50</td>
<td>66,5</td>
<td>3,29</td>
<td>3,00</td>
</tr>
<tr>
<td>1851</td>
<td>64,5</td>
<td>2,96</td>
<td>2,98</td>
</tr>
<tr>
<td>52</td>
<td>54,2</td>
<td>2,61</td>
<td>2,88</td>
</tr>
<tr>
<td>53</td>
<td>39,0</td>
<td>2,73</td>
<td>2,73</td>
</tr>
<tr>
<td>54</td>
<td>20,6</td>
<td>2,42</td>
<td>2,55</td>
</tr>
<tr>
<td>55</td>
<td>6,7</td>
<td>2,58</td>
<td>2,41</td>
</tr>
<tr>
<td>1856</td>
<td>4,3</td>
<td>2,45</td>
<td>2,38</td>
</tr>
<tr>
<td>57</td>
<td>22,8</td>
<td>2,46</td>
<td>2,57</td>
</tr>
<tr>
<td>58</td>
<td>54,8</td>
<td>2,72</td>
<td>2,89</td>
</tr>
<tr>
<td>59</td>
<td>93,8</td>
<td>3,12</td>
<td>3,28</td>
</tr>
<tr>
<td>60</td>
<td>95,7</td>
<td>3,55</td>
<td>3,30</td>
</tr>
</tbody>
</table>

1861 | 77,2 | 3,28 | 3,11 | 3,19 | 3,12 | | 1886 | 25,4 | 2,22 | 2,45 | 8,43 | 7,63 | 7,52 |
62	59,1	2,79	2,93	2,89	2,92		87	12,6	2,40	2,35	8,04	7,17	6,95
63	44,0	2,57	2,78	2,77	2,75		88	7,0	2,33	2,31	7,53	6,97	6,69
64	46,9	2,65	2,81	2,72	2,78		89	6,3	2,30	6,49	6,95	6,66	
65	30,5	2,64	2,50	2,60			90	7,1	2,31	6,77	6,98	6,70	

1866 | 16,3 | 2,50 | 2,14 | 2,45 | | | 1891 | 35,5 | 2,53 | 8,49 | 8,00 | 7,98 |
67	7,3	2,41	2,26	2,35			92	73,0	2,83	9,31	9,35	9,66
68	37,3	2,71	2,45	2,08			69	73,9	3,08	3,06	3,08	
70	139,1	3,73	3,95	3,80								
1871	111,2	3,45	3,59	3,49								
72	101,7	3,36	3,42	3,39								

Mittelwerth von \(v_1 - v_1' \) gleich ± 0,16

\[
v = a + b \cdot r
\]
nach der Methode der kleinsten Quadrate zu bestimmen, und so für Bombay die drei Formeln

\[v_1 = 2'34 + 0,010 \cdot r \quad v_2 = 2'27 + 0,011 \cdot r \quad v_3 = 2'25 + 0,008 \cdot r \]

erhalten, nach welchen ich rückwärts die in Tab. III aufgeführten Werthe \(v_1', v_2' \) und \(v_3' \) berechnete, deren Vergleichung mit den gegebenen Werthen mir die durchschnittlichen Differenzen

\[\pm 0',16 \quad \pm 0',14 \quad \pm 0',17 \]

ergab, deren geringer Betrag offenbar ein günstiges Zeugnis für die Berechtigung der obigen Formeln abgibt. Ich füge noch bei, dass die etwelsehe Differenz zwischen der ersten der drei Formeln und der im Jahre 1879 (vgl. Mitth. XXVI) erhaltenen Formel davon herrührt, dass in jener früheren Zeit meine Reihe der Relativzahlen noch nicht definitiv festgestellt war, — verweise dagegen im Uebrigen auf die (wie schon oben angemerkt) beabsichtigte spätere Arbeit, in welcher gerade die Bombay'schen Reihen eine hervorragende Rolle spielen werden. —

Die Tab. VII enthält endlich noch in der mit \(v_4 \) überschriebenen Columne die bereits in Tab. V für Genua mitgeheilten Jahresmittel, mit deren Hülfe ich für diesen Ort die Variationsformel

\[v_4 = 6',72 + 0,036 \cdot r \]

erhielt, nach welcher rückwärts die ebenfalls eingetragenen Werthe \(v_4' \) berechnet wurden, während die \(v_4'' \) aus der nahe gleichwerthigen Formel

\[v_4 = 6',38 + 0,045 \cdot r \]

hervorgingen, in welcher, unter der Annahme, dass auch für Genua der von mir seit Jahren für Mittel-Europa benutzte Werth \(b = 0,045 \) gültig sei, \(\alpha = \frac{1}{20} \sum (v_4 - \)
0,045. \(r \) = 6,38 gesetzt wurde. Die Differenzen \(v_4 - v_4' \) und \(v_4 - v_4'' \) ergeben die etwas grossen Mittelwerthe
\[
\pm 0',44 \quad \text{und} \quad \pm 0',46
\]
was aber nur eine Folge der oben erwähnten, in Genua nach dem Maximum von 1883/4 eingetretenen Anomalie ist, und es hätte leicht ein weit besserer Anschluss erreicht werden können, wenn ich einfach die betreffenden Jahrgänge 1885—88 weggeworfen hätte. Ich wollte dies jedoch nicht thun, da es mir schien, es sei weit eher meine Aufgabe Verhältnisse solcher Art aufzudecken als zu vertuschen.

Ich lasse nun noch eine Fortsetzung der Sonnenfleckenliteratur folgen:

<table>
<thead>
<tr>
<th></th>
<th>(p)</th>
<th>(q)</th>
<th>(L)</th>
<th>(\beta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aug. 18. 466</td>
<td>90.(^\circ)7</td>
<td>470'</td>
<td>126.(^\circ)5</td>
<td>+ 13.(^\circ)8</td>
</tr>
<tr>
<td>18. 671</td>
<td>89.4</td>
<td>432</td>
<td>126.5</td>
<td>+ 13.9</td>
</tr>
<tr>
<td>19. 408</td>
<td>81.8</td>
<td>293</td>
<td>136.5</td>
<td>+ 14.0</td>
</tr>
</tbody>
</table>

Ein kleinerer Fleck folgte Aug. 18. bei \(L = 116^\circ \) und \(\beta = + 14^{1/3} \). Vorher bestand (Aug. 16) eine Gruppe kleiner Flecke \(L = 125^\circ \) bis \(117^\circ \). Eine spätere Gruppe (Aug. 21) erstreckte sich von \(L = 116^\circ \) bis \(113^\circ \). Angrenzend entstand (Aug. 25) ein behofter Fleck bei \(L = 117^\circ \) und \(\beta = 14^\circ \), darauf noch ein behofter Fleck bei \(L = 121^\circ ; b = + 14^\circ \). 4."

Zur Fortsetzung der in Nr. LXXVII für 1878—87 gegebenen Reihen entnehme ich „Table XIV“ der „Results“ und den schriftlichen Mittheilungen von Herrn Superintendent Ellis folgende Angaben über die erhaltenen Werthe der „Difference between the Greatest and Least of the 24 Hourly Values“:

<table>
<thead>
<tr>
<th>Month</th>
<th>1888</th>
<th>1889</th>
<th>1890</th>
<th>1891</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>5'2</td>
<td>3'6</td>
<td>4'8</td>
<td>4'6</td>
</tr>
<tr>
<td>February</td>
<td>5'6</td>
<td>5'2</td>
<td>5'4</td>
<td>5'5</td>
</tr>
<tr>
<td>March</td>
<td>7'6</td>
<td>6'7</td>
<td>7'5</td>
<td>8'6</td>
</tr>
<tr>
<td>April</td>
<td>8'2</td>
<td>8'6</td>
<td>9'2</td>
<td>9'9</td>
</tr>
<tr>
<td>May</td>
<td>8'8</td>
<td>8'4</td>
<td>8'1</td>
<td>11'1</td>
</tr>
<tr>
<td>June</td>
<td>9'3</td>
<td>8'6</td>
<td>8'6</td>
<td>9'6</td>
</tr>
<tr>
<td>July</td>
<td>9'2</td>
<td>8'2</td>
<td>8'9</td>
<td>11'0</td>
</tr>
<tr>
<td>August</td>
<td>9'1</td>
<td>8'4</td>
<td>9'2</td>
<td>10'5</td>
</tr>
<tr>
<td>September</td>
<td>7'2</td>
<td>7'1</td>
<td>7'9</td>
<td>9'3</td>
</tr>
<tr>
<td>October</td>
<td>6'8</td>
<td>6'4</td>
<td>6'9</td>
<td>9'5</td>
</tr>
<tr>
<td>November</td>
<td>5'4</td>
<td>4'9</td>
<td>5'7</td>
<td>6'8</td>
</tr>
<tr>
<td>December</td>
<td>4'3</td>
<td>3'9</td>
<td>4'2</td>
<td>5'1</td>
</tr>
<tr>
<td>Means</td>
<td>7'22</td>
<td>6'67</td>
<td>7'20</td>
<td>8'46</td>
</tr>
</tbody>
</table>

Nach der in Nr. LXXVII für Greenwich abgeleiteten Formel

\[v = 6'68 + 0,045 \cdot r \]

ergeben sich für die obigen 4 Jahre die mittlern Variationen

6'98 \hspace{1cm} 6'96 \hspace{1cm} 7'00 \hspace{1cm} 8'28

welche von den beobachteten Werthen um

0'24 \hspace{1cm} -0'29 \hspace{1cm} 0'20 \hspace{1cm} 0,18

verschieden sind, so dass eine sehr gute Übereinstimmung statt hat.

663) Declinationsvariationen in Bordeaux. Ausgezogen aus den «Annales de l’Observatoire de Bordeaux.»

Aus den für die sechs Tagesstunden 21¹, 0, 3, 6, 9, 12¹ gegebenen Monatmitteln der Declination die Differenz zwischen
Max. und Min. nehmend, habe ich folgende Werthe für die Variationen erhalten:

<table>
<thead>
<tr>
<th>Monat</th>
<th>1881</th>
<th>1882</th>
<th>1883</th>
<th>1884</th>
<th>1885</th>
</tr>
</thead>
<tbody>
<tr>
<td>Januar</td>
<td>3,7</td>
<td>4,2</td>
<td>4,5</td>
<td>5,3</td>
<td>3,6</td>
</tr>
<tr>
<td>Februar</td>
<td>4,7</td>
<td>5,0</td>
<td>5,8</td>
<td>6,5</td>
<td>4,7</td>
</tr>
<tr>
<td>März</td>
<td>8,0</td>
<td>7,6</td>
<td>6,5</td>
<td>7,8</td>
<td>7,0</td>
</tr>
<tr>
<td>April</td>
<td>8,2</td>
<td>10,8</td>
<td>10,0</td>
<td>9,5</td>
<td>7,6</td>
</tr>
<tr>
<td>Mai</td>
<td>7,8</td>
<td>8,7</td>
<td>7,2</td>
<td>8,5</td>
<td>6,2</td>
</tr>
<tr>
<td>Juni</td>
<td>9,7</td>
<td>8,2</td>
<td>8,4</td>
<td>8,4</td>
<td>8,0</td>
</tr>
<tr>
<td>Juli</td>
<td>8,3</td>
<td>7,1</td>
<td>8,9</td>
<td>6,7</td>
<td>7,7</td>
</tr>
<tr>
<td>August</td>
<td>8,2</td>
<td>7,4</td>
<td>6,9</td>
<td>6,0</td>
<td>7,0</td>
</tr>
<tr>
<td>September</td>
<td>7,9</td>
<td>8,4</td>
<td>8,2</td>
<td>8,2</td>
<td>7,3</td>
</tr>
<tr>
<td>October</td>
<td>7,2</td>
<td>6,7</td>
<td>8,2</td>
<td>8,2</td>
<td>5,9</td>
</tr>
<tr>
<td>November</td>
<td>5,5</td>
<td>6,9</td>
<td>5,7</td>
<td>5,8</td>
<td>4,6</td>
</tr>
<tr>
<td>December</td>
<td>4,5</td>
<td>7,0</td>
<td>10,1</td>
<td>4,0</td>
<td>2,9</td>
</tr>
</tbody>
</table>

Mittel 6,98 7,33 7,53 7,08 6,04

Es ergibt sich hieraus für Bordeaux die provisorische Variationsformel

\[v = 4,35 + 0,045 \cdot r \]

welche die vorliegenden Jahresmittler der Variationen zwar ziemlich gut darstellt, aber eine so auffallend kleine Ortsconstante enthält, dass die Möglichkeit einer Revision mit Hülfe weiterer Jahrgänge sehr wünschbar erscheint.

664) Rudolf Wolf, Beobachtungen der Sonnenflecken auf der Sternwarte in Zürich im Jahre 1892 (Forts. zu 642).

<table>
<thead>
<tr>
<th>1892</th>
<th>1892</th>
<th>1892</th>
<th>1892</th>
<th>1892</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>206,16</td>
<td>I</td>
<td>197,16</td>
<td>I</td>
</tr>
<tr>
<td>-</td>
<td>36,16</td>
<td>-</td>
<td>225,12</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>53,7</td>
<td>-</td>
<td>254,10</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>61,4</td>
<td>-</td>
<td>264,10</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>10,8</td>
<td>-</td>
<td>302,4</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>111,2</td>
<td>II</td>
<td>141,10</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>131,2</td>
<td>-</td>
<td>34,8</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>155,10</td>
<td>-</td>
<td>43,6</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>165,10</td>
<td>-</td>
<td>821,16</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>176,10</td>
<td>-</td>
<td>92,20</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>187,12</td>
<td>-</td>
<td>102,20</td>
<td>-</td>
</tr>
</tbody>
</table>

Juni 1893.
Wolf, astronomische Mitteilungen.

<table>
<thead>
<tr>
<th>1892</th>
<th>1892</th>
<th>1892</th>
<th>1892</th>
<th>1892</th>
</tr>
</thead>
<tbody>
<tr>
<td>III</td>
<td>22.4.10</td>
<td>V</td>
<td>13.2.6</td>
<td>VII</td>
</tr>
<tr>
<td>-</td>
<td>22.4.12</td>
<td>-</td>
<td>14.3.8</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>24.4.16</td>
<td>-</td>
<td>15.3.12</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>25.6.18</td>
<td>-</td>
<td>16.3.10</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>26.6.16</td>
<td>-</td>
<td>17.3.8</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>27.6.12</td>
<td>-</td>
<td>18.3.10</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>28.4.6</td>
<td>-</td>
<td>19.4.10</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>31.2.2</td>
<td>-</td>
<td>20.4.8</td>
<td>-</td>
</tr>
<tr>
<td>IV</td>
<td>1.12</td>
<td>-</td>
<td>21.4.10</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>2.2.4</td>
<td>-</td>
<td>22.4.12</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>3.2.4</td>
<td>-</td>
<td>23.5.14</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>4.2.2</td>
<td>-</td>
<td>24.7.16</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>5.1.2</td>
<td>-</td>
<td>25.4.16</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>6.3.4</td>
<td>-</td>
<td>26.5.18</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>7.3.4</td>
<td>-</td>
<td>27.7.20</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>8.4.6</td>
<td>-</td>
<td>28.8.24</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>9.4.6</td>
<td>-</td>
<td>29.6.20</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>10.3.6</td>
<td>-</td>
<td>30.6.22</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>11.4.6</td>
<td>-</td>
<td>31.5.24</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>12.4.10</td>
<td>VI</td>
<td>1.2.20</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>13.3.4</td>
<td>-</td>
<td>2.4.14</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>14.2.2</td>
<td>-</td>
<td>3.4.12</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>15.2.2</td>
<td>-</td>
<td>5.1.2</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>16.2.2</td>
<td>-</td>
<td>6.1.2</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>17.3.4</td>
<td>-</td>
<td>7.2.4</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>18.3.8</td>
<td>-</td>
<td>8.3.4</td>
<td>VIII</td>
</tr>
<tr>
<td>-</td>
<td>20.5.14</td>
<td>-</td>
<td>9.3.4</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>21.5.22</td>
<td>-</td>
<td>10.3.8</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>22.6.24</td>
<td>-</td>
<td>11.3.8</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>23.8.36</td>
<td>-</td>
<td>15.2.6</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>24.8.30</td>
<td>-</td>
<td>17.5.14</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>25.6.26</td>
<td>-</td>
<td>18.4.12</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>26.5.20</td>
<td>-</td>
<td>19.6.20</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>27.5.18</td>
<td>-</td>
<td>20.6.16</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>29.4.12</td>
<td>-</td>
<td>22.5.16</td>
<td>-</td>
</tr>
<tr>
<td>V</td>
<td>1.3.6</td>
<td>-</td>
<td>23.5.12</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>2.4.6</td>
<td>-</td>
<td>24.5.12</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>3.5.12</td>
<td>-</td>
<td>25.4.10</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>4.4.10</td>
<td>-</td>
<td>28.3.8</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>7.5.10</td>
<td>-</td>
<td>29.3.4</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>8.4.8</td>
<td>-</td>
<td>30.1.2</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>9.3.4</td>
<td>VII</td>
<td>1.12</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>10.2.3</td>
<td>-</td>
<td>2.2.4</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>11.3.5</td>
<td>-</td>
<td>3.2.4</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>12.2.4</td>
<td>-</td>
<td>4.3.6</td>
<td>-</td>
</tr>
</tbody>
</table>
Alfred Wolfer, Beobachtungen der Sonnenflecken auf der Sternwarte in Zürich im Jahre 1892 (Forts. zu 643.)

<table>
<thead>
<tr>
<th>1892</th>
<th>1892</th>
<th>1892</th>
<th>1892</th>
<th>1892</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>8.82</td>
<td>III</td>
<td>114.25</td>
</tr>
<tr>
<td>3</td>
<td>8.77</td>
<td>-</td>
<td>125.39</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>7.50</td>
<td>-</td>
<td>134.27</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>3.15</td>
<td>-</td>
<td>155.20</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>2.3</td>
<td>-</td>
<td>164.11</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>7.36</td>
<td>-</td>
<td>179.23</td>
<td>-</td>
</tr>
<tr>
<td>16</td>
<td>9.50</td>
<td>-</td>
<td>187.23</td>
<td>-</td>
</tr>
<tr>
<td>17</td>
<td>6.19</td>
<td>-</td>
<td>193.19</td>
<td>-</td>
</tr>
<tr>
<td>18</td>
<td>10.50</td>
<td>-</td>
<td>205.34</td>
<td>-</td>
</tr>
<tr>
<td>22</td>
<td>7.40</td>
<td>-</td>
<td>215.49</td>
<td>-</td>
</tr>
<tr>
<td>26</td>
<td>6.23</td>
<td>-</td>
<td>225.61</td>
<td>-</td>
</tr>
<tr>
<td>30</td>
<td>4.9</td>
<td>-</td>
<td>238.55</td>
<td>-</td>
</tr>
<tr>
<td>II</td>
<td>1</td>
<td>6.46</td>
<td>-</td>
<td>248.49</td>
</tr>
<tr>
<td>3</td>
<td>7.35</td>
<td>-</td>
<td>256.64</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>3.91</td>
<td>-</td>
<td>277.48</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>5.152</td>
<td>-</td>
<td>317.32</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>6.149</td>
<td>IV</td>
<td>16.20</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>6.167</td>
<td>-</td>
<td>251.12</td>
<td>-</td>
</tr>
<tr>
<td>14</td>
<td>7.137</td>
<td>-</td>
<td>33.7</td>
<td>-</td>
</tr>
<tr>
<td>16</td>
<td>7.135</td>
<td>-</td>
<td>54.11</td>
<td>-</td>
</tr>
<tr>
<td>18</td>
<td>8.75</td>
<td>-</td>
<td>65.13</td>
<td>-</td>
</tr>
<tr>
<td>19</td>
<td>9.49</td>
<td>-</td>
<td>75.15</td>
<td>-</td>
</tr>
<tr>
<td>20</td>
<td>8.38</td>
<td>-</td>
<td>84.14</td>
<td>-</td>
</tr>
<tr>
<td>21</td>
<td>7.36</td>
<td>-</td>
<td>94.13</td>
<td>-</td>
</tr>
<tr>
<td>22</td>
<td>6.36</td>
<td>-</td>
<td>105.13</td>
<td>-</td>
</tr>
<tr>
<td>23</td>
<td>4.11</td>
<td>-</td>
<td>115.21</td>
<td>-</td>
</tr>
<tr>
<td>25</td>
<td>4.12</td>
<td>-</td>
<td>135.29</td>
<td>-</td>
</tr>
<tr>
<td>26</td>
<td>2.7</td>
<td>-</td>
<td>144.27</td>
<td>-</td>
</tr>
<tr>
<td>27</td>
<td>4.9</td>
<td>-</td>
<td>163.10</td>
<td>-</td>
</tr>
<tr>
<td>29</td>
<td>2.8</td>
<td>-</td>
<td>175.23</td>
<td>-</td>
</tr>
<tr>
<td>III</td>
<td>3.1</td>
<td>-</td>
<td>186.47</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>4.11</td>
<td>-</td>
<td>206.73</td>
<td>VI</td>
</tr>
<tr>
<td>5</td>
<td>4.24</td>
<td>-</td>
<td>216.120</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>3.38</td>
<td>-</td>
<td>227.716</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>2.35</td>
<td>-</td>
<td>239.155</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>1.31</td>
<td>-</td>
<td>249.179</td>
<td>-</td>
</tr>
</tbody>
</table>

NB. Die mit * bezeichneten Zählungen sind mit dem kleinen Handfernrohr gemacht und wie früher mit dem Factor 1,5 in Rechnung gebracht worden.
Wolf, astronomische Mittheilungen.

<table>
<thead>
<tr>
<th>1892</th>
<th>1892</th>
<th>1892</th>
<th>1892</th>
<th>1892</th>
</tr>
</thead>
<tbody>
<tr>
<td>IX 11</td>
<td>7.93</td>
<td>X 164.27</td>
<td>XI 10</td>
<td>5.23</td>
</tr>
<tr>
<td>125.94</td>
<td>- 27</td>
<td>9.77</td>
<td>- 176.25</td>
<td>- 137.24</td>
</tr>
<tr>
<td>13.563</td>
<td>- 28</td>
<td>7.89</td>
<td>- 206.37</td>
<td>- 144.32</td>
</tr>
<tr>
<td>146.54</td>
<td>- 30</td>
<td>5.75</td>
<td>- 226.38</td>
<td>- 154.26</td>
</tr>
<tr>
<td>156.51</td>
<td>X</td>
<td>1</td>
<td>6.88</td>
<td>- 273.1</td>
</tr>
<tr>
<td>165.35</td>
<td>- 2</td>
<td>7.87</td>
<td>- 283.35</td>
<td>- 173.52</td>
</tr>
<tr>
<td>176.22</td>
<td>- 3</td>
<td>7.107</td>
<td>- 295.50</td>
<td>- 183.59</td>
</tr>
<tr>
<td>186.31</td>
<td>- 4</td>
<td>10.121</td>
<td>- 306.66</td>
<td>- 192.1</td>
</tr>
<tr>
<td>195.48</td>
<td>- 5</td>
<td>9.113</td>
<td>- 316.54</td>
<td>- 212.33</td>
</tr>
<tr>
<td>205.68</td>
<td>- 6</td>
<td>7.73</td>
<td>XI</td>
<td>18.53</td>
</tr>
<tr>
<td>213.61</td>
<td>- 7</td>
<td>7.73</td>
<td>- 36.73</td>
<td>- 265.49</td>
</tr>
<tr>
<td>223.6</td>
<td>- 8</td>
<td>7.71</td>
<td>- 45.67</td>
<td>- 276.66</td>
</tr>
<tr>
<td>234.62</td>
<td>- 9</td>
<td>7.77</td>
<td>- 54.54</td>
<td>- 297.84</td>
</tr>
<tr>
<td>245.73</td>
<td>- 10</td>
<td>6.55</td>
<td>- 83.31</td>
<td>- 309.45</td>
</tr>
<tr>
<td>256.57</td>
<td>- 13</td>
<td>4.40</td>
<td>- 94.34</td>
<td></td>
</tr>
</tbody>
</table>

666) Beobachtungen der Sonnenflecken in Paris durch Herrn A. Schmoll. Schriftliche Mittheilung. (Forts. zu 645.)

Herr Schmoll theilt mir seine neue Serie mit der Bemerkung mit, dass er die Beobachtungen von VI 6 — VIII 8 bei Herrn C. Flammarion auf der Sternwarte von Juvisy (Seine-et-Oise), aber mit einem dem in Paris angewandten ganz gleichen Fernrohr gemacht habe. Er erhielt:

<table>
<thead>
<tr>
<th>1892</th>
<th>1892</th>
<th>1892</th>
<th>1892</th>
<th>1892</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1</td>
<td>7.109</td>
<td>II</td>
<td>15.46</td>
</tr>
<tr>
<td>4</td>
<td>3.89</td>
<td>-</td>
<td>38.66</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>6.82</td>
<td>-</td>
<td>46.90</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>2.50</td>
<td>-</td>
<td>59.103</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>3.75</td>
<td>-</td>
<td>93.153</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>3.27</td>
<td>-</td>
<td>125.223</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>2.20</td>
<td>-</td>
<td>134.230</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>1.11</td>
<td>-</td>
<td>148.250</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>3.8</td>
<td>-</td>
<td>178.173</td>
<td>-</td>
</tr>
<tr>
<td>14</td>
<td>5.18</td>
<td>-</td>
<td>18.155</td>
<td>-</td>
</tr>
<tr>
<td>16</td>
<td>7.70</td>
<td>-</td>
<td>20.898</td>
<td>-</td>
</tr>
<tr>
<td>17</td>
<td>8.92</td>
<td>-</td>
<td>21.780</td>
<td>-</td>
</tr>
<tr>
<td>19</td>
<td>9.114</td>
<td>-</td>
<td>225.63</td>
<td>-</td>
</tr>
<tr>
<td>20</td>
<td>9.100</td>
<td>-</td>
<td>236.54</td>
<td>-</td>
</tr>
<tr>
<td>22</td>
<td>9.70</td>
<td>-</td>
<td>252.8</td>
<td>-</td>
</tr>
<tr>
<td>25</td>
<td>5.53</td>
<td>-</td>
<td>262.18</td>
<td>-</td>
</tr>
<tr>
<td>28</td>
<td>4.34</td>
<td>-</td>
<td>271.1</td>
<td>-</td>
</tr>
<tr>
<td>30</td>
<td>3.28</td>
<td>-</td>
<td>292.10</td>
<td>-</td>
</tr>
</tbody>
</table>
Wolf, astronomische Mittheilungen.

<table>
<thead>
<tr>
<th>1892</th>
<th>1892</th>
<th>1892</th>
<th>1892</th>
<th>1892</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>VI</td>
<td>VI</td>
<td>VII</td>
<td>VIII</td>
</tr>
<tr>
<td>95.37</td>
<td>27.112</td>
<td>28.567</td>
<td>23.429</td>
<td>19.4129</td>
</tr>
<tr>
<td>10.617</td>
<td>3.63</td>
<td>29.633</td>
<td>24.556</td>
<td>20.5124</td>
</tr>
<tr>
<td>11.547</td>
<td>4.57</td>
<td>30.312</td>
<td>25.660</td>
<td>21.9128</td>
</tr>
<tr>
<td>12.557</td>
<td>6.37</td>
<td>31.312</td>
<td>26.789</td>
<td>22.988</td>
</tr>
<tr>
<td>13.460</td>
<td>7.15</td>
<td>32.226</td>
<td>27.83</td>
<td>23.694</td>
</tr>
<tr>
<td>14.568</td>
<td>8.362</td>
<td>33.16</td>
<td>28.482</td>
<td>25.450</td>
</tr>
<tr>
<td>16.475</td>
<td>9.531</td>
<td>4.51</td>
<td>29.6616</td>
<td>26.850</td>
</tr>
<tr>
<td>17.376</td>
<td>10.668</td>
<td>5.84</td>
<td>30.7132</td>
<td>27.655</td>
</tr>
<tr>
<td>18.461</td>
<td>11.558</td>
<td>6.124</td>
<td>31.7111</td>
<td>28.635</td>
</tr>
<tr>
<td>20.458</td>
<td>13.75</td>
<td>8.6165</td>
<td>5.7108</td>
<td>30.481</td>
</tr>
<tr>
<td>21.685</td>
<td>16.690</td>
<td>9.5180</td>
<td>6.753</td>
<td>31.474</td>
</tr>
<tr>
<td>22.7141</td>
<td>17.677</td>
<td>10.5142</td>
<td>7.652</td>
<td>IX 15.56</td>
</tr>
<tr>
<td>23.8165</td>
<td>18.7131</td>
<td>11.5123</td>
<td>8.658</td>
<td>25.65</td>
</tr>
<tr>
<td>24.7134</td>
<td>19.6180</td>
<td>12.5100</td>
<td>9.758</td>
<td>35.36</td>
</tr>
<tr>
<td>25.8104</td>
<td>20.6170</td>
<td>13.5108</td>
<td>11.841</td>
<td>45.32</td>
</tr>
<tr>
<td>26.6100</td>
<td>21.6170</td>
<td>15.568</td>
<td>12.782</td>
<td>5.438</td>
</tr>
<tr>
<td>27.8152</td>
<td>22.7141</td>
<td>16.567</td>
<td>13.886</td>
<td>6.420</td>
</tr>
<tr>
<td>28.8162</td>
<td>23.6117</td>
<td>17.895</td>
<td>14.872</td>
<td>7.638</td>
</tr>
<tr>
<td>29.6150</td>
<td>24.6105</td>
<td>18.80</td>
<td>15.886</td>
<td></td>
</tr>
<tr>
<td>30.6228</td>
<td>25.695</td>
<td>19.686</td>
<td>16.9130</td>
<td></td>
</tr>
<tr>
<td>31.7250</td>
<td>26.680</td>
<td>20.644</td>
<td>17.8123</td>
<td></td>
</tr>
<tr>
<td>17.178</td>
<td>27.67</td>
<td>22.332</td>
<td>18.7176</td>
<td></td>
</tr>
</tbody>
</table>

Leider musste hier Herr Schmoll seine werthvolle Serie wegen angegriffen Augen abbrechen.

667) Aus einer Mittheilung von Herrn Prof. Schiaparelli in Mailand (Forts. zu 649.)

Hr. Prof. Schiaparelli theilt mir folgende durch Hrn. Dr. Rajna erhaltene Variationen der Declinationsnadel im Jahre 1892 mit:

<table>
<thead>
<tr>
<th>1892</th>
<th>Variation von 20° bis 2°</th>
<th>Differenzen 1892—1891</th>
</tr>
</thead>
<tbody>
<tr>
<td>Januar</td>
<td>4°,33</td>
<td>0°,62</td>
</tr>
<tr>
<td>Februar</td>
<td>6,27</td>
<td>1,76</td>
</tr>
<tr>
<td>März</td>
<td>10,31</td>
<td>2,46</td>
</tr>
<tr>
<td>April</td>
<td>11,89</td>
<td>1,31</td>
</tr>
<tr>
<td>Mai</td>
<td>11,47</td>
<td>0,77</td>
</tr>
<tr>
<td>Juni</td>
<td>11,66</td>
<td>1,30</td>
</tr>
<tr>
<td>Juli</td>
<td>11,76</td>
<td>0,78</td>
</tr>
<tr>
<td>August</td>
<td>11,55</td>
<td>1,59</td>
</tr>
<tr>
<td>September</td>
<td>9,96</td>
<td>1,41</td>
</tr>
<tr>
<td>Oktober</td>
<td>9,10</td>
<td>0,61</td>
</tr>
<tr>
<td>November</td>
<td>5,56</td>
<td>0,78</td>
</tr>
<tr>
<td>December</td>
<td>3,07</td>
<td>0,22</td>
</tr>
<tr>
<td>Jahr</td>
<td>8°,91</td>
<td>1°,13</td>
</tr>
</tbody>
</table>
Ich habe denselben in gewohnter Weise die Vergleichung mit dem Vorjahre beigefügt.

668) Sonnenflecken-Beobachtungen von Herrn W. Winkler in Jena. Schriftliche Mitteilung. (Fortsetzung zu 647.)

Herr Winkler theilt mir folgende neue Serie seiner Aufzeichnungen mit:

<table>
<thead>
<tr>
<th>1892</th>
<th>1892</th>
<th>1892</th>
<th>1892</th>
<th>1892</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>62.14</td>
<td>III</td>
<td>182.7</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>73.22</td>
<td></td>
<td>192.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>84.24</td>
<td></td>
<td>202.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11.26</td>
<td></td>
<td>244.44</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13.38</td>
<td></td>
<td>255.38</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19.84</td>
<td></td>
<td>265.32</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20.65</td>
<td></td>
<td>275.24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>21.84</td>
<td></td>
<td>286.25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22.74</td>
<td></td>
<td>303.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>23.65</td>
<td></td>
<td>313.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>265.13</td>
<td>IV</td>
<td>13.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>315.9</td>
<td></td>
<td>24.10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.55</td>
<td></td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>26.27</td>
<td></td>
<td>4.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>34.26</td>
<td></td>
<td>5.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>56.45</td>
<td></td>
<td>6.19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>64.50</td>
<td></td>
<td>7.16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>94.69</td>
<td></td>
<td>8.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>206.41</td>
<td></td>
<td>9.13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>216.43</td>
<td></td>
<td>10.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>225.34</td>
<td></td>
<td>115.22</td>
<td></td>
</tr>
<tr>
<td></td>
<td>234.15</td>
<td></td>
<td>125.30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>244.18</td>
<td></td>
<td>135.36</td>
<td></td>
</tr>
<tr>
<td></td>
<td>252.7</td>
<td></td>
<td>143.10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>416.1</td>
<td></td>
<td>163.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>52.4</td>
<td></td>
<td>185.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>61.3</td>
<td></td>
<td>195.33</td>
<td></td>
</tr>
<tr>
<td></td>
<td>82.17</td>
<td></td>
<td>205.45</td>
<td></td>
</tr>
<tr>
<td></td>
<td>92.19</td>
<td></td>
<td>216.94</td>
<td></td>
</tr>
<tr>
<td></td>
<td>104.26</td>
<td></td>
<td>237.112</td>
<td></td>
</tr>
<tr>
<td></td>
<td>121.4</td>
<td></td>
<td>248.142</td>
<td></td>
</tr>
<tr>
<td></td>
<td>133.17</td>
<td></td>
<td>256.119</td>
<td></td>
</tr>
<tr>
<td></td>
<td>144.23</td>
<td></td>
<td>268.105</td>
<td></td>
</tr>
<tr>
<td></td>
<td>152.5</td>
<td></td>
<td>275.67</td>
<td></td>
</tr>
<tr>
<td></td>
<td>164.12</td>
<td></td>
<td>284.48</td>
<td></td>
</tr>
<tr>
<td></td>
<td>174.11</td>
<td></td>
<td>296.26</td>
<td></td>
</tr>
</tbody>
</table>
Wolf, astronomische Mittheilungen.

<table>
<thead>
<tr>
<th>1892</th>
<th>1892</th>
<th>1892</th>
<th>1892</th>
<th>1892</th>
</tr>
</thead>
<tbody>
<tr>
<td>IX</td>
<td>277.47</td>
<td>X</td>
<td>186.42</td>
<td>XI</td>
</tr>
<tr>
<td>-</td>
<td>298.55</td>
<td>-</td>
<td>195.28</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>306.78</td>
<td>-</td>
<td>207.39</td>
<td>-</td>
</tr>
<tr>
<td>X</td>
<td>167.00</td>
<td>-</td>
<td>217.48</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>36.83</td>
<td>-</td>
<td>228.30</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>47.95</td>
<td>-</td>
<td>263.16</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>56.86</td>
<td>-</td>
<td>273.23</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>74.57</td>
<td>-</td>
<td>283.23</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>104.34</td>
<td>-</td>
<td>307.86</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>113.29</td>
<td>-</td>
<td>317.54</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>121.23</td>
<td>XI</td>
<td>177.3</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>164.26</td>
<td>-</td>
<td>24.47</td>
<td>-</td>
</tr>
</tbody>
</table>

646) Sonnenflecken-Beobachtungen in O-Gyalla. —

Es sind in Fortsetzung der früheren Reihen in O-Gyalla folgende Beobachtungen erhalten worden:

<table>
<thead>
<tr>
<th>1892</th>
<th>1892</th>
<th>1892</th>
<th>1892</th>
<th>1892</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>25.15</td>
<td>III</td>
<td>23.13</td>
<td>V</td>
</tr>
<tr>
<td>-</td>
<td>34.17</td>
<td>-</td>
<td>23.13</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>44.14</td>
<td>-</td>
<td>25.14</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>83.11</td>
<td>-</td>
<td>26.11</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>132.2</td>
<td>-</td>
<td>27.49</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>198.17</td>
<td>-</td>
<td>29.49</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>208.14</td>
<td>-</td>
<td>31.48</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>227.17</td>
<td>IV</td>
<td>23.4</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>265.9</td>
<td>-</td>
<td>53.5</td>
<td>VI</td>
</tr>
<tr>
<td>-</td>
<td>274.5</td>
<td>-</td>
<td>93.5</td>
<td>-</td>
</tr>
<tr>
<td>II</td>
<td>144.12</td>
<td>-</td>
<td>105.5</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>64.10</td>
<td>-</td>
<td>115.10</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>74.14</td>
<td>-</td>
<td>155.9</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>102.14</td>
<td>-</td>
<td>256.17</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>133.21</td>
<td>-</td>
<td>303.6</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>222.12</td>
<td>V</td>
<td>24.6</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>243.8</td>
<td>-</td>
<td>46.17</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>252.3</td>
<td>-</td>
<td>93.3</td>
<td>-</td>
</tr>
<tr>
<td>III</td>
<td>32.3</td>
<td>-</td>
<td>133.7</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>62.6</td>
<td>-</td>
<td>144.10</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>71.4</td>
<td>-</td>
<td>158.11</td>
<td>VII</td>
</tr>
<tr>
<td>-</td>
<td>174.5</td>
<td>-</td>
<td>193.6</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>183.4</td>
<td>-</td>
<td>203.7</td>
<td>-</td>
</tr>
</tbody>
</table>
Wolf, astronomische Mitteilungen.

<table>
<thead>
<tr>
<th>1892</th>
<th>1892</th>
<th>1892</th>
<th>1892</th>
<th>1892</th>
</tr>
</thead>
<tbody>
<tr>
<td>IX</td>
<td>17</td>
<td>2.4</td>
<td>X</td>
<td>45</td>
</tr>
<tr>
<td>XI</td>
<td>27</td>
<td>3.7</td>
<td>XII</td>
<td>12</td>
</tr>
<tr>
<td>XI</td>
<td>20</td>
<td>3.7</td>
<td>XI</td>
<td>55</td>
</tr>
<tr>
<td>XII</td>
<td>20</td>
<td>3.7</td>
<td>XII</td>
<td>55</td>
</tr>
<tr>
<td>XI</td>
<td>20</td>
<td>3.7</td>
<td>XII</td>
<td>55</td>
</tr>
<tr>
<td>XII</td>
<td>20</td>
<td>3.7</td>
<td>XII</td>
<td>55</td>
</tr>
</tbody>
</table>

670) Sonnenflecken-Beobachtungen von Herrn A. W. Quimby in Philadelphia. (Forts. zu 651).

Herr Quimby hat mir folgende neue Serie seiner Sonnenbeobachtungen übersandt:

<table>
<thead>
<tr>
<th>1892</th>
<th>1892</th>
<th>1892</th>
<th>1892</th>
<th>1892</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>15</td>
<td>4.4</td>
<td>IV</td>
<td>20</td>
</tr>
<tr>
<td>II</td>
<td>71</td>
<td>14</td>
<td>V</td>
<td>24</td>
</tr>
<tr>
<td>III</td>
<td>15</td>
<td>6.23</td>
<td>VI</td>
<td>31</td>
</tr>
<tr>
<td>IV</td>
<td>20</td>
<td>4.76</td>
<td>VII</td>
<td>24</td>
</tr>
<tr>
<td>V</td>
<td>24</td>
<td>7.119</td>
<td>VIII</td>
<td>31</td>
</tr>
</tbody>
</table>

John G. Wolbach Library, Harvard-Smithsonian Center for Astrophysics • Provided by the NASA Astrophysics Data System
Wolf, astronomische Mittheilungen.

<table>
<thead>
<tr>
<th>1892</th>
<th>1892</th>
<th>1892</th>
<th>1892</th>
<th>1892</th>
</tr>
</thead>
<tbody>
<tr>
<td>VI</td>
<td>24.839</td>
<td>VII</td>
<td>1 7.27</td>
<td>IX 8.4.19</td>
</tr>
<tr>
<td>- 23 6.33</td>
<td>- 3 9.132</td>
<td>- 4 9.96</td>
<td>- 10 5.79</td>
<td>- 16 4.44</td>
</tr>
<tr>
<td>- 26 9.37</td>
<td>- 4 4.96</td>
<td>- 10 5.79</td>
<td>- 17 5.29</td>
<td>- 24 5.43</td>
</tr>
<tr>
<td>- 27 5.28</td>
<td>- 5 5.67</td>
<td>- 11 6.129</td>
<td>- 18 5.35</td>
<td>- 25 3.59</td>
</tr>
<tr>
<td>- 28 5.23</td>
<td>- 6 7.31</td>
<td>- 12 5.103</td>
<td>- 19 6.49</td>
<td>- 26 2.19</td>
</tr>
<tr>
<td>- 29 4.12</td>
<td>- 7 7.75</td>
<td>- 13 5.71</td>
<td>- 20 6.80</td>
<td>- 27 4.56</td>
</tr>
<tr>
<td>- 30 3.10</td>
<td>- 8 7.63</td>
<td>- 14 5.61</td>
<td>- 21 6.43</td>
<td>- 29 4.54</td>
</tr>
</tbody>
</table>

- 24.22 - 10 7.32 - 16 5.39 - 23 4.87 - XII 1 7.44
- 4.44 - 12 6.22 - 18 7.49 - 25 5.13 - 3 11.59
- 6.3109 - 14 9.102 - 20 5.69 - 27 5.29 - 5 10.77
- 8.253 - 16 10.80 - 22 2.31 - 29 6.93 - 7 10.23
- 9.198 - 17 9.82 - 23 4.69 - 30 7.111 - 8 8.19
- 12.5137 - 20 7.151 - 26 7.41 - 27 4.57 - 11 9.58
- 13 5.97 - 21 10.907 - 27 8.74 - 34 1.099 - 12 7.78
- 16.668 - 24 6.47 - 30 4.60 - 63.52 - 18 2.11
- 18 6.103 - 26 4.15 - - 25.84 - 8.233 - 20 4.17
- 19 6.33 - 27 6.27 - 35.137 - 91.9 - 21 3.29
- 20.32 - 28 6.31 - 45.43 - 101.5 - 22 3.28
- 21 4.22 - 29 5.34 - 55.97 - 114.11 - 23 4.17
- 22 6.26 - 30 5.56 - 65.57 - 121.5 - 24 5.36
- 23 5.23 - 31 4.31 - 76.79 - 134.17 - 26 5.45
- 24.545 - 1 5.21 - 86.79 - 143.44 - 27 6.48
- 25 5.44 - 2 4.31 - 97.59 - 163.47 - 28 5.67
- 26 9.87 - 3 5.27 - 107.49 - 172.57 - 29 5.35
- 27 8.54 - 4 4.25 - 117.35 - 183.36 - 30 5.46
- 28 7.68 - 5 4.21 - 128.35 - 194.67 - 31 5.45
- 29 6.127 - 6 7.71 - 138.63 - 203.38 - 32 5.38
- 30 6.32 - 7 7.43 - 146.72 - 213.40

671) Beobachtungen der Sonnenflecken in Madrid.
(Forts. zu 648.)

Herr Director Migh. Merino hat mir folgende, durch Herrn Adjunkt Ventosa in bisheriger Weise ausgeführte Beobachtungen mitgetheilt:
<table>
<thead>
<tr>
<th>Year</th>
<th>1892</th>
<th>1892</th>
<th>1892</th>
<th>1892</th>
<th>1892</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1</td>
<td>8.62</td>
<td>IV</td>
<td>16</td>
<td>6.31</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5.45</td>
<td></td>
<td>18</td>
<td>7.42</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>3.44</td>
<td></td>
<td>19</td>
<td>7.50</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4.46</td>
<td></td>
<td>20</td>
<td>7.33</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>6.19</td>
<td></td>
<td>21</td>
<td>6.91</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>6.27</td>
<td></td>
<td>22</td>
<td>8.145</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>11.73</td>
<td></td>
<td>23</td>
<td>10.138</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>12.71</td>
<td></td>
<td>24</td>
<td>10.174</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>9.63</td>
<td></td>
<td>25</td>
<td>7.137</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>7.71</td>
<td></td>
<td>26</td>
<td>7.105</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>6.22</td>
<td></td>
<td>28</td>
<td>7.76</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>6.36</td>
<td></td>
<td>29</td>
<td>7.31</td>
</tr>
<tr>
<td>II</td>
<td>1</td>
<td>7.45</td>
<td></td>
<td>29</td>
<td>7.36</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4.49</td>
<td></td>
<td>30</td>
<td>6.32</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5.46</td>
<td></td>
<td>VII</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>7.61</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6.32</td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>5.86</td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>3.68</td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>4.56</td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>3.74</td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>3.96</td>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>4.95</td>
<td></td>
<td></td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>3.107</td>
<td></td>
<td></td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>5.90</td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>4.97</td>
<td></td>
<td></td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>3.20</td>
<td></td>
<td></td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>4.9</td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>III</td>
<td>2</td>
<td>4.9</td>
<td></td>
<td></td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4.17</td>
<td></td>
<td></td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5.19</td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>2.46</td>
<td></td>
<td></td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>5.16</td>
<td></td>
<td></td>
<td>VI</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>7.29</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>8.45</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>8.34</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>4.29</td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>5.32</td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>6.59</td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>8.36</td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>6.55</td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>8.38</td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>IV</td>
<td>4</td>
<td>8.14</td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>6.49</td>
<td></td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

John G. Wolbach Library, Harvard-Smithsonian Center for Astrophysics • Provided by the NASA Astrophysics Data System
Sonnenfleckenzählungen in Kremsmünster.

Herr Professor Fr. Schwab, Adjunkt der Sternwarte in Kremsmünster, sendet mir folgende Zählungen ein, welche er mit einem Plössl'schen Fernrohr von 3,5 cm. Öffnung bei Vergrößerung 24 erhielt:

<table>
<thead>
<tr>
<th>1892</th>
<th>1892</th>
<th>1892</th>
<th>1892</th>
<th>1892</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>2</td>
<td>5.25</td>
<td>III</td>
<td>24.430</td>
</tr>
<tr>
<td>-</td>
<td>6</td>
<td>2.13</td>
<td>-</td>
<td>26.7.26</td>
</tr>
<tr>
<td>-</td>
<td>9</td>
<td>3.7</td>
<td>-</td>
<td>27.5.33</td>
</tr>
<tr>
<td>-</td>
<td>11</td>
<td>2.6</td>
<td>-</td>
<td>28.7.21</td>
</tr>
<tr>
<td>-</td>
<td>12</td>
<td>1.5</td>
<td>-</td>
<td>29.7.20</td>
</tr>
<tr>
<td>-</td>
<td>13</td>
<td>2.3</td>
<td>-</td>
<td>31.4.7</td>
</tr>
<tr>
<td>-</td>
<td>14</td>
<td>3.5</td>
<td>IV</td>
<td>1.4.8</td>
</tr>
<tr>
<td>-</td>
<td>17</td>
<td>7.21</td>
<td>-</td>
<td>2.8.5</td>
</tr>
<tr>
<td>-</td>
<td>20</td>
<td>9.25</td>
<td>-</td>
<td>3.2.3</td>
</tr>
<tr>
<td>-</td>
<td>21</td>
<td>10.29</td>
<td>-</td>
<td>4.2.3</td>
</tr>
<tr>
<td>-</td>
<td>22</td>
<td>10.24</td>
<td>-</td>
<td>5.3.3</td>
</tr>
<tr>
<td>-</td>
<td>30</td>
<td>3.6</td>
<td>-</td>
<td>6.5.8</td>
</tr>
<tr>
<td>II</td>
<td>1</td>
<td>4.19</td>
<td>-</td>
<td>7.5.7</td>
</tr>
<tr>
<td>-</td>
<td>2</td>
<td>5.20</td>
<td>-</td>
<td>8.5.9</td>
</tr>
<tr>
<td>-</td>
<td>9</td>
<td>3.49</td>
<td>-</td>
<td>9.4.5</td>
</tr>
<tr>
<td>-</td>
<td>10</td>
<td>3.65</td>
<td>-</td>
<td>10.4.6</td>
</tr>
<tr>
<td>-</td>
<td>13</td>
<td>4.63</td>
<td>-</td>
<td>11.5.14</td>
</tr>
<tr>
<td>-</td>
<td>14</td>
<td>6.73</td>
<td>-</td>
<td>12.5.29</td>
</tr>
<tr>
<td>-</td>
<td>18</td>
<td>8.44</td>
<td>-</td>
<td>13.5.19</td>
</tr>
<tr>
<td>-</td>
<td>20</td>
<td>7.22</td>
<td>-</td>
<td>14.4.15</td>
</tr>
<tr>
<td>-</td>
<td>21</td>
<td>7.16</td>
<td>-</td>
<td>15.5.17</td>
</tr>
<tr>
<td>-</td>
<td>25</td>
<td>2.3</td>
<td>-</td>
<td>21.5.48</td>
</tr>
<tr>
<td>III</td>
<td>1</td>
<td>2.5</td>
<td>-</td>
<td>23.9.79</td>
</tr>
<tr>
<td>-</td>
<td>3</td>
<td>2.7</td>
<td>-</td>
<td>25.7.65</td>
</tr>
<tr>
<td>-</td>
<td>6</td>
<td>3.12</td>
<td>-</td>
<td>27.8.35</td>
</tr>
<tr>
<td>-</td>
<td>7</td>
<td>1.9</td>
<td>V</td>
<td>1.4.14</td>
</tr>
<tr>
<td>-</td>
<td>8</td>
<td>2.16</td>
<td>-</td>
<td>3.6.24</td>
</tr>
<tr>
<td>-</td>
<td>9</td>
<td>2.13</td>
<td>-</td>
<td>4.6.25</td>
</tr>
<tr>
<td>-</td>
<td>12</td>
<td>3.21</td>
<td>-</td>
<td>13.3.16</td>
</tr>
<tr>
<td>-</td>
<td>13</td>
<td>2.10</td>
<td>-</td>
<td>14.4.27</td>
</tr>
<tr>
<td>-</td>
<td>14</td>
<td>3.10</td>
<td>-</td>
<td>15.3.21</td>
</tr>
<tr>
<td>-</td>
<td>16</td>
<td>3.5</td>
<td>-</td>
<td>19.4.14</td>
</tr>
<tr>
<td>-</td>
<td>17</td>
<td>3.5</td>
<td>-</td>
<td>20.4.11</td>
</tr>
<tr>
<td>-</td>
<td>18</td>
<td>2.4</td>
<td>-</td>
<td>21.6.19</td>
</tr>
<tr>
<td>-</td>
<td>19</td>
<td>2.6</td>
<td>-</td>
<td>22.7.40</td>
</tr>
<tr>
<td>-</td>
<td>21</td>
<td>4.15</td>
<td>-</td>
<td>24.7.37</td>
</tr>
<tr>
<td>-</td>
<td>23</td>
<td>4.24</td>
<td>-</td>
<td>26.6.38</td>
</tr>
</tbody>
</table>
Wolf, astronomische Mittheilungen.

673) Sonnenflecken-Beobachtungen auf dem Haverford College Observatory in Pennsylvanien. (Forts. von 650.)

Die Herren Directoren Leavenworth und Collins haben mir folgende neue, auf dem Haverford College Observatory erhaltene Serie von Sonnenbeobachtungen mitgetheilt:

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Mai</th>
<th>Juni</th>
<th>Juli</th>
<th>August</th>
<th>September</th>
<th>Oktober</th>
<th>November</th>
<th>Dezember</th>
</tr>
</thead>
<tbody>
<tr>
<td>1892</td>
<td>15.42</td>
<td>3.18</td>
<td>2.746</td>
<td>22.7115</td>
<td>1.640</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1892</td>
<td>-25.49</td>
<td>-4.17</td>
<td>-3.679</td>
<td>-23.531</td>
<td>-25.53</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1892</td>
<td>-37.71</td>
<td>-6.322</td>
<td>-4.735</td>
<td>-24.650</td>
<td>-35.29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1892</td>
<td>-46.56</td>
<td>-7.112</td>
<td>-5.835</td>
<td>-25.586</td>
<td>-44.21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1892</td>
<td>-83.40</td>
<td>-12.437</td>
<td>-8.521</td>
<td>VII</td>
<td>2.320</td>
<td>-7.738</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1892</td>
<td>-16.45</td>
<td>-15.310</td>
<td>-10.720</td>
<td>-44.53</td>
<td>-10.607</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1892</td>
<td>-17.84</td>
<td>-16.28</td>
<td>-11.428</td>
<td>-53.77</td>
<td>-11.585</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1892</td>
<td>-26.519</td>
<td>-25.665</td>
<td>-20.318</td>
<td>-11.533</td>
<td>-17.528</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1892</td>
<td>-46.27</td>
<td>-4.22</td>
<td>-28.8100</td>
<td>-17.533</td>
<td>-24.559</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1892</td>
<td>-56.32</td>
<td>-6.515</td>
<td>-29.7125</td>
<td>-18.690</td>
<td>-25.547</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1892</td>
<td>-65.49</td>
<td>-8.627</td>
<td>-30.6135</td>
<td>-20.543</td>
<td>-26.516</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1892</td>
<td>-93.94</td>
<td>-10.520</td>
<td>-27.778</td>
<td>-22.522</td>
<td>-28.786</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1892</td>
<td>-10.280</td>
<td>-11.635</td>
<td>-35.19</td>
<td>-23.418</td>
<td>-29.660</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1892</td>
<td>-16.7121</td>
<td>-20.640</td>
<td>-15.635</td>
<td>-29.679</td>
<td>-65.77</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1892</td>
<td>-17.797</td>
<td>-23.10.193</td>
<td>-16.565</td>
<td>-30.670</td>
<td>-75.118</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1892</td>
<td>-19.956</td>
<td>-28.537</td>
<td>-18.668</td>
<td>-44.71</td>
<td>-96.64</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1892</td>
<td>-27.28</td>
<td>V</td>
<td>1.532</td>
<td>21.7161</td>
<td>-31.530</td>
<td>-121.24</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Wolf, astronomische Mittheilungen. 65

Die grössern Lücken im August und am Schlusse des Jahres sind Folgen zeitweiliger Abwesenheit des Beobachters.

674) Aus einem Schreiben des Herrn Prof. H. Geelmuyden in Christiania vom 12. Januar 1893. (Forts. zu 652.)

Herr Professor Geelmuyden theilt mir für 1892 folgende Bestimmungen mit:

<table>
<thead>
<tr>
<th>1892</th>
<th>Westliche Declination</th>
<th>Variationen 2h—21h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
<td>II</td>
</tr>
<tr>
<td>Januar</td>
<td>12° 20',1</td>
<td>12° 19',0</td>
</tr>
<tr>
<td>Februar</td>
<td>18,6</td>
<td>17,9</td>
</tr>
<tr>
<td>März</td>
<td>18,6</td>
<td>17,4</td>
</tr>
<tr>
<td>April</td>
<td>18,3</td>
<td>17,8</td>
</tr>
<tr>
<td>Mai</td>
<td>18,0</td>
<td>18,2</td>
</tr>
<tr>
<td>Juni</td>
<td>17,2</td>
<td>16,7</td>
</tr>
<tr>
<td>Juli</td>
<td>16,0</td>
<td>15,7</td>
</tr>
<tr>
<td>August</td>
<td>15,3</td>
<td>14,2</td>
</tr>
<tr>
<td>September</td>
<td>15,5</td>
<td>14,7</td>
</tr>
<tr>
<td>October</td>
<td>15,1</td>
<td>12,9</td>
</tr>
<tr>
<td>November</td>
<td>13,2</td>
<td>11,1</td>
</tr>
<tr>
<td>December</td>
<td>12,8</td>
<td>11,4</td>
</tr>
</tbody>
</table>

Jahr | 12° 16',56 | 12° 15',56 | 7',56 | 1',05 |

und fügt bei: „L’ascension de la courbe de variation (2h—9h) de 1890 à 1892 est plus rapide que dans la partie correspondante de la dernière période (1879—81) si l’on prend pour époques les minima de 1878 et de 1889. Il sera intéressant de voir si le maximum prochain sera retardé comme la dernière fois, ou si la courbe prendra la même forme que dans les trois périodes avant-dernières avec maxima en 1848, 1859 et 1870.“

In Kalocsa wurden von dem Assistenten, Herrn Pater Joh. Schreiber, im Jahre 1892 folgende Zählungen erhalten:

<table>
<thead>
<tr>
<th>1892</th>
<th>1892</th>
<th>1892</th>
<th>1892</th>
<th>1892</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>3</td>
<td>7.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>7.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>3.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>2.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>3.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>8.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>10.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>9.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>6.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>5.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>5.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>4.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>5.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>6.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>5.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>6.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>10.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>7.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>7.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>4.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>4.56</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>6.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>7.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>8.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>8.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>9.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>8.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>7.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>7.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>6.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>4.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>3.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>4</td>
<td>3.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>3.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>3.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The table above contains the number of sunspots counted in Kalocsa in 1892, with columns for each month from I to VIII.

676) Beobachtungen der Sonnenflecken in Catania.
Nach schriftlicher Mittheilung des Directors, Herrn Prof. A. Riccò. (Forts. zu 656.)
Herr Prof. Riccò hat nunmehr seine früher in Palermo ausgeführten Beobachtungen in Cantania wieder regelmässig aufgenommen und folgende Serie erhalten:

<table>
<thead>
<tr>
<th>1892</th>
<th>1892</th>
<th>1892</th>
<th>1892</th>
</tr>
</thead>
<tbody>
<tr>
<td>IX</td>
<td>X</td>
<td>XI</td>
<td>XII</td>
</tr>
<tr>
<td>306.87</td>
<td>105.18</td>
<td>306.39</td>
<td>3.17</td>
</tr>
<tr>
<td>25.29</td>
<td>112.12</td>
<td>316.41</td>
<td>24.53</td>
</tr>
<tr>
<td>37.36</td>
<td>144.21</td>
<td>16.28</td>
<td>27.62</td>
</tr>
<tr>
<td>58.47</td>
<td>164.30</td>
<td>36.28</td>
<td>28.62</td>
</tr>
<tr>
<td>6.41</td>
<td>194.27</td>
<td>53.22</td>
<td>29.72</td>
</tr>
<tr>
<td>8.37</td>
<td>273.12</td>
<td>115.11</td>
<td>21.30</td>
</tr>
<tr>
<td>9.62</td>
<td>283.17</td>
<td>173.26</td>
<td>9.35</td>
</tr>
</tbody>
</table>

Wolf, astronomische Mittheilungen.
1893 | 1893 | 1892 | 1892 | 1892
---|---|---|---|---|---
VI | 20.841 | | | | |
- 25.987 - 29.8159 - 1.628 - 8.65ₘ₉ - 22.64₂ₘ₉
- 30.521 - 5.9₈₄ - 6.₄₉ - 1₅.₅₃₅ - 2₈.₅₅₂ₘ₉
- 2.3₃₇ - 7.7₅₃ - 8.7₃₂ - 1₇.₅₅₁ - 1₂.₈₄₇ₘ₉
- 3.4₃₆ - 8.7₄₂ - 9.₃₁₉ - 1₈.₆₃₃ - 2₁.₄₄₇
- 4.5₆₂ - 9.7₃₁₉ - 1₁.₇₉₆ - 1₉.₆₃₈ - 3₁.₉₈₂
- 5.₄₄₈ - 1₀.₉₃₁ - 1₂.₆₇₆ - 2₃.₅₈₉ₘ₉ - 5₁.₂₉₁ₘ₉
- 6.₅₅₇ - 1₁.₉₄₁ - 1₄.₆₅₉ - 2₆.₇₃₅ₑ - 6₁.₁₁₃
- 7.₅₃₇ - 1₂.₇₅₅ - 1₅.₆₉₉ - 2₇.₇₄₆ₑ - ₇₁.₇₉₉
- ₈.₇₈₂ - 1₃.₉₅₈ - 1₆.₇₅₆ - 2₉.₈₈₉ₑ - 1₀.₁₂₁₂₀
- ₉.₅₅₁ - 1₄.₁₀₅₄ - 1₇.₆₂₇ - 3₀.₈₉₉ - ₁₃.₃₄₇
- 1₀.₆₁₀₂ - 1₅.₉₇₁ - 1₉.₅₄₅ - 3₁.₈₈₅ₘ₉ - ₁₅.₃₂₄
- 1₂.₅₂₀₉ - 1₆.₈₅₃ - 2₀.₅₇₃ - XI 1₈.₇₆₉ₘ₉ - ₁₆.₃₄₂₆
- ¹₃.₅₁₈ - 1₇.₁₀₁₁₀ - 2₁.₃₉₆ - 2₂.₈₄ - ₁₇.₄₂₄₈
- ₁₄.₄₂₄ - ₁₈.₉₉₅ - 2₂.₃₇₄ - ₄₅.₆₄ₙ₉ - ₁₈.₂₆₉₉
- ₁₅.₅₁₉ - ₁₉.₆₉₉₉₉ - ₂₃.₄₈₆ - ₅₄.₄₃₉ₙ₉ - ₁₉.₃₁₂₉₉
- ₁₆.₅₂₅ - ₂₀.₆₄₆₉₉ - ₂₄.₄₇₂ - ₆₅.₆₉₉ - ₂₀.₃₁₄₉₉
- ₁₇.₆₆₇ - ₂₁.₅₉₂₉₉ - ₂₅.₄₇₁ - ₇₄.₅₁ - ₂₃.₅₄₇₉₉
- ₁₈.₆₆₄ - ₂₂.₁₀₉₃₉₉ - ₂₆.₈₆₆ - ₈₃.₄₉₉ - ₂₄.₇₆₇₉₉
- ₁₉.₆₁₂₁ - ₂₃.₇₅₉₉₉ - ₂₇.₇₄₂ - ₁₂.₅₃₀ - ₂₆.₇₁₅₉₉
- ₂₀.₆₄₆₉₉ - ₂₄.₅₂₄₉₉ - ₂₈.₇₇₁ - ₁₃.₄₂₄ - ₂₇.₇₁₂₀₉₉
- ₂₂.₅₃₈ - ₂₅.₄₃₉₉₉ - ₂₉.₈₆₅ - ₁₄.₆₃₉₉₉ - ₃₀.₈₈₈₉₉
- ₂₃.₄₁₀ - ₂₆.₆₃ₙ₉₉₉₉ - ₃₀.₆₉₉ - ₁₅.₃₁₁ - ₃₁.₅₂₅₉₉

Herr Prof. Riccò fagt bei: „J'ai l'honneur de vous envoyer la statistique des taches solaires en 1892 à l'Observatoire de Catane avec le réfracteur de 0₉₈.₃₅. La projection du disque solaire est de 0₉₈.₅₇ de diamètre comme à Palerme, et l'oculaire que j'ai appliqué donne à-peu-près autant de lumière à l'image comme à l'autre observatoire. — J'ai indiqué avec d et m les observations faite par les assistants, M. le Docteur Del Lungo ou M. l'ingénieur A. Mascari; j'ai mis une e aux observations que j'ai pu faire à l'Observatoire de l'Etna (à l'hauteur de 3000₉₈) lorsque l'éruption récente avait beaucoup diminué d'intensité."
677) Beobachtungen der Sonnenflecken in Moncalieri.
Nach schriftlicher Mittheilung von Hrn. Director P. Denza.
(Forts. zu 655).

Es wurden folgende Zählungen erhalten:

<table>
<thead>
<tr>
<th>1892</th>
<th>1892</th>
<th>1892</th>
<th>1892</th>
<th>1892</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>7.3.20</td>
<td>III</td>
<td>24.3.17</td>
<td>V</td>
</tr>
<tr>
<td>II</td>
<td>13.19</td>
<td></td>
<td>18.4.13</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>9.1.9</td>
<td></td>
<td>14.3.15</td>
<td></td>
</tr>
</tbody>
</table>

Juni 1893.
678) Memorie della Società degli Spettroscopisti italiani raccolte e pubblicate per cura del Prof. P. Tacchini. (Forts. zu 654).

Herr Professor Tacchini theilt folgende in Rom erhaltene Zählungen der Sonnenflecken mit:

<table>
<thead>
<tr>
<th>1892</th>
<th>1892</th>
<th>1892</th>
<th>1892</th>
<th>1892</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1</td>
<td>9.35</td>
<td>III</td>
<td>4</td>
</tr>
<tr>
<td>-</td>
<td>2</td>
<td>8.41</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>-</td>
<td>4</td>
<td>7.20</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>-</td>
<td>7</td>
<td>3.8</td>
<td>-</td>
<td>9</td>
</tr>
<tr>
<td>-</td>
<td>8</td>
<td>4.16</td>
<td>-</td>
<td>11</td>
</tr>
<tr>
<td>-</td>
<td>10</td>
<td>3.9</td>
<td>-</td>
<td>15</td>
</tr>
<tr>
<td>-</td>
<td>12</td>
<td>1.2</td>
<td>-</td>
<td>17</td>
</tr>
<tr>
<td>-</td>
<td>13</td>
<td>3.10</td>
<td>-</td>
<td>18</td>
</tr>
<tr>
<td>-</td>
<td>16</td>
<td>6.24</td>
<td>-</td>
<td>20</td>
</tr>
<tr>
<td>-</td>
<td>17</td>
<td>7.25</td>
<td>-</td>
<td>21</td>
</tr>
<tr>
<td>-</td>
<td>18</td>
<td>9.41</td>
<td>-</td>
<td>22</td>
</tr>
<tr>
<td>-</td>
<td>20</td>
<td>9.35</td>
<td>-</td>
<td>23</td>
</tr>
<tr>
<td>-</td>
<td>21</td>
<td>11.36</td>
<td>-</td>
<td>24</td>
</tr>
<tr>
<td>-</td>
<td>24</td>
<td>6.34</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>-</td>
<td>26</td>
<td>6.16</td>
<td>-</td>
<td>28</td>
</tr>
<tr>
<td>-</td>
<td>27</td>
<td>4.12</td>
<td>-</td>
<td>31</td>
</tr>
<tr>
<td>-</td>
<td>28</td>
<td>5.14</td>
<td>-</td>
<td>31</td>
</tr>
<tr>
<td>-</td>
<td>29</td>
<td>4.15</td>
<td>-</td>
<td>3.36</td>
</tr>
<tr>
<td>-</td>
<td>31</td>
<td>7.20</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>-</td>
<td>31</td>
<td>7.20</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>II</td>
<td>1</td>
<td>7.24</td>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td>-</td>
<td>2</td>
<td>7.23</td>
<td>-</td>
<td>11</td>
</tr>
<tr>
<td>-</td>
<td>4</td>
<td>5.12</td>
<td>-</td>
<td>12</td>
</tr>
<tr>
<td>-</td>
<td>5</td>
<td>6.29</td>
<td>-</td>
<td>13</td>
</tr>
<tr>
<td>-</td>
<td>6</td>
<td>5.20</td>
<td>-</td>
<td>14</td>
</tr>
<tr>
<td>-</td>
<td>7</td>
<td>4.27</td>
<td>-</td>
<td>15</td>
</tr>
<tr>
<td>-</td>
<td>8</td>
<td>3.34</td>
<td>-</td>
<td>17</td>
</tr>
<tr>
<td>-</td>
<td>12</td>
<td>5.34</td>
<td>-</td>
<td>18</td>
</tr>
<tr>
<td>-</td>
<td>13</td>
<td>6.42</td>
<td>-</td>
<td>19</td>
</tr>
<tr>
<td>-</td>
<td>14</td>
<td>8.57</td>
<td>-</td>
<td>20</td>
</tr>
<tr>
<td>-</td>
<td>16</td>
<td>8.44</td>
<td>-</td>
<td>21</td>
</tr>
<tr>
<td>-</td>
<td>18</td>
<td>8.37</td>
<td>-</td>
<td>22</td>
</tr>
<tr>
<td>-</td>
<td>20</td>
<td>5.14</td>
<td>-</td>
<td>23</td>
</tr>
<tr>
<td>-</td>
<td>21</td>
<td>7.22</td>
<td>-</td>
<td>24</td>
</tr>
<tr>
<td>-</td>
<td>22</td>
<td>5.18</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>-</td>
<td>24</td>
<td>4.14</td>
<td>-</td>
<td>26</td>
</tr>
<tr>
<td>-</td>
<td>25</td>
<td>2.6</td>
<td>-</td>
<td>27</td>
</tr>
<tr>
<td>-</td>
<td>27</td>
<td>1.4</td>
<td>-</td>
<td>30</td>
</tr>
<tr>
<td>-</td>
<td>29</td>
<td>2.5</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>-</td>
<td>2</td>
<td>1.2</td>
<td>-</td>
<td>3</td>
</tr>
</tbody>
</table>

VIII 1 5.39

VII 1 3.12

IX 1 6.15
Wolf, astronomische Mittheilungen.

1892	1892	1892	1892	1892
1X 2 5.14 | 1X 24 5.24 | X 19 5.25 | XI 14 3.19 | XII 6 13.43
- 3 5.14 | - 25 6.55 | - 20 5.31 | - 15 3.12 | - 7 13.42
- 4 4.11 | - 27 7.31 | - 22 5.24 | - 16 3.20 | - 8 11.37
- 6 5.10 | - 27 7.24 | - 23 4.17 | - 17 2.27 | - 10 12.31
- 7 7.24 | - 28 7.24 | - 24 4.11 | - 18 3.23 | - 11 8.30
- 8 6.16 | - 29 8.46 | - 25 4.9 | - 20 3.21 | - 15 3.8
- 9 4.24 | X 1 6.35 | - 27 4.9 | - 21 4.25 | - 16 3.10
- 10 5.22 | - 3 6.34 | - 28 3.17 | - 22 4.30 | - 17 2.6
- 12 5.30 | - 4 10.42 | - 29 5.37 | - 23 6.31 | - 18 2.7
- 13 5.20 | - 6 6.53 | - 30 5.40 | - 24 6.24 | - 19 1.4
- 14 6.21 | - 7 6.31 | - 31 6.35 | - 25 5.25 | - 20 2.4
- 16 4.14 | - 9 5.13 | - 4 4.31 | - 27 5.25 | - 22 3.15
- 18 6.19 | - 11 2.7 | - 6 4.19 | - 29 7.32 | - 28 6.29
- 19 5.17 | - 12 2.14 | - 7 3.20 | - 30 8.28 | - 30 5.25
- 20 4.21 | - 13 5.27 | - 8 3.14 | XII 1 11.37
- 22 3.17 | - 16 4.15 | - 11 4.14 | - 4 9.1
- 23 4.21 | - 18 6.27 | - 12 2.6 | - 5 12.50

Zum Schlusse füge ich noch eine kleine Fortsetzung des Sammlungsverzeichnisses bei:

364) Etui mit Stadia, Kalibermassstab, etc. — Geschenkt von Prof. R. Wolf.

Ein aus dem Nachlasse des bekannten Ballistikers Victor Sigmund Albrecht Sinner (Bern 1797—ebenda 1859; Artillerieoberst und eidgen. Pulververwalter) stammendes Etui, welches ich unlängst antiquarisch ankaufen konnte. Die Stadia, um derentwillen ich mich in Besitz des Etuis setzte, besteht aus einer 12 cm langen und 4 cm breiten Messingtafel mit einem ausgeschnittenen gleichschenkligen Dreiecke von 8 cm Basis und 104 cm Höhe; die die Entfernung vom Auge normirende Schnur misst 70 cm; die Eintheilung am Dreiecke geht auf der einen (für Infanterie bestimmten) Seite von 150—1000, auf der andern (für Cavallerie bestimmten) Seite von 250—1200, so dass diese Zahlen muthmasslich die Entfernungen in Schritten geben sollen. Auf den für die Sammlung wenig bedeutenden Kalibermassstab und die übrigen rein militärischen Beigaben (Pulverprobe, etc.) glaube ich hier nicht näher eintreten, sondern nur noch erwähnen zu sollen, dass das Ganze sauber ausgeführt, und höchst
wahrscheinlich eine Arbeit derselben Brüder Johann Karl Otz (Oberbalm 1813—Bern 1888) und Gottlieb Friedrich Otz (Oberbalm 1816—Bern 1888) ist, welche auch den unter Nr. 79 beschriebenen „Militär-Planimeter“ verfertigten, und ganz geschickte Mechaniker waren, aber sich nie aus ökonomischen Bedrängnissen herauszuarbeiten wussten.
