Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra)

Dominik Fleitmanna,*, Stephen J. Burnsb, Augusto Manginic, Manfred Mudelseed, Jan Kramersa, Igor Villaa, Ulrich Neffc, Abdulkarim A. Al-Subbarye, Annett Buettnera, Dorothea Hipplera, Albert Mattera

aInstitute of Geological Sciences, University of Bern, Bern, Switzerland
bDepartment of Geosciences, Morrill Science Center, University of Massachusetts, Amherst, MA, USA
cHeidelberg Academy of Sciences, Heidelberg, Germany
dMeteorological Institute, University of Leipzig, Leipzig, Germany
eDepartment of Earth and Environmental Science, Faculty of Science, University of Sana’a, Sana’a, Republic of Yemen

Received 22 February 2005; accepted 25 April 2006

Abstract

High-resolution oxygen isotope (δ^{18}O) profiles of Holocene stalagmites from four caves in Northern and Southern Oman and Yemen (Socotra) provide detailed information on fluctuations in precipitation along a latitudinal transect from 12°N to 23°N. δ^{18}O values reflect the amount of precipitation which is primarily controlled by the mean latitudinal position of the ITCZ and dynamics of the Indian summer monsoon (ISM). During the early Holocene rapidly decreasing δ^{18}O values indicate a rapid northward displacement in the mean latitudinal position of the summer ITCZ and the associated ISM rainfall belt, with decadal- to centennial-scale changes in monsoon precipitation correlating well with high-latitude temperature variations recorded in Greenland ice cores. During the middle to late Holocene the summer ITCZ continuously migrated southward and monsoon precipitation decreased gradually in response to decreasing solar insolation, a trend, which is also recorded in other monsoon records from the Indian and East Asian monsoon domains. Importantly, there is no evidence for an abrupt middle Holocene weakening in monsoon precipitation. Although abrupt monsoon events are apparent in all monsoon records, they are short-lived and clearly superimposed on the long-term trend of decreasing monsoon precipitation. For the late Holocene there is an anti-correlation between ISM precipitation in Oman and inter-monsoon (spring/autumn) precipitation on Socotra, revealing a possible long-term change in the duration of the summer monsoon season since at least 4.5 ka BP. Together with the progressive shortening of the ISM season, gradual southward retreat of the mean summer ITCZ and weakening of the ISM, the total amount of precipitation decreased in those areas located at the northern fringe of the Indian and Asian monsoon domains, but increased in areas closer to the equator.

1. Introduction

The seasonal migration of the Intertropical Convergence Zone (ITCZ)—a narrow latitudinal zone of wind convergence and precipitation—determines the onset, duration and termination of the rainy season in the tropics and subtropics. Variations in the mean latitudinal position and structure of the ITCZ affects tropical and also extra tropical climate on a variety of time scales, ranging from monthly to millennial. For the Holocene, paleoclimate records from many parts of the tropics now reveal that shifts in the mean latitudinal position of ITCZ were accompanied by significant changes in the hydrological cycle (e.g., An et al., 2000; deMenocal, 2000; Gasse, 2000; Maslin and Burns, 2000; Seltzer et al., 2000; Haug et al.,...
In order to monitor ITCZ-induced changes in the spatial distribution, seasonality and amount of precipitation, a dense network of well-resolved and continuous paleoclimate records is required. In the Indian summer monsoon (ISM) domain, however, such a network does not yet exist, although there is a relatively large number of marine and continental climate records available from this area (Fig. 1). The majority of these records are based on lacustrine sequences that, along with the marine records, have chronological uncertainties due to so-called “hard water” and “reservoir” effects (e.g., see discussions in Gasse, 2000; Staubwasser et al., 2002) that often make correlation amongst them difficult. In addition to chronological difficulties, low resolution and temporal gaps, as summarized in Fig. 1, represent an additional hindrance. As a result of these shortcomings, considerable discrepancies regarding the mean latitudinal position of the summer ITCZ and the associated belt of maximum precipitation exist. Also, whether Indian and Asian summer monsoon (ASM) precipitation decreased gradually or abruptly during the middle to late Holocene is subject of ongoing debates and two contrasting hypothesis exist: (1) The ISM and ASM weakened abruptly between ~5–4.5 ka BP (Morrill et al., 2003) and (2) more gradually, mimicking decreasing orbitally induced solar insolation (Gupta et al., 2003; Fleitmann et al., 2003a; Dykoski et al., 2005; Ivanochko et al., 2005; Wang et al., 2005).

A further general question is the origin of the ISM and its interaction with the ITCZ. The more traditional view is that the monsoon is driven by land-sea thermal contrast (“gigantic sea-land breeze”) between the Eurasian landmass and the Southern Indian Ocean (Webster et al., 1998). However, recent work suggest that the ISM is an integral part of the Asian monsoon system.

Fig. 1. Location map of Holocene continental and marine records from the Indian and Asian monsoon domains, whereas the focus is on continental records. The filled section of the “wheel-diagram” shows the time interval represented by each record. Assigned numbers denote references listed below and temporal resolution for the time series. Underlined bold numbers denote records displayed in Figs. 7 and 8. Star symbols denotes cave sites in Oman and Yemen (Denniston et al., 2000; Gasse et al., 1996; Jung et al., 2004; Prasad et al., 1997; Singh et al., 1974; Thompson et al., 2000).
part of the ITCZ and the manifestation of the seasonal migration of the ITCZ (Chao and Chen, 2001; Gadgil, 2003). Which one of these two explanations describes the dynamics of the ISM better remains unsolved. As mentioned earlier, a dense network of climatic time-series might shed some light on the relationship between the ITCZ and the ISM. One possible source of such records is from stalagmite-based oxygen isotope ($d^{18}O$) profiles, as demonstrated by recently published results from Oman (Neff et al., 2001; Burns et al., 2002; Fleitmann et al., 2003a, 2004). However, the isotopic time-series are fragmentary (Fig. 1), such as for Northern Oman where no information currently exists for the period after \sim6.3 ka BP. Also, the existing stalagmite records span only a relatively narrow latitudinal transect ranging from 17° to 23°N, which is not sufficient to monitor larger-scale shifts in the mean latitudinal position of the ITCZ during the Holocene.

To aid in filling existing temporal and spatial gaps in climate records, we present two new high-resolution oxygen isotope records, one from Northern Oman (stalagmite H12, Hoti Cave; Fig. 2a) and one from Socotra (stalagmite D1, Dimarshim Cave, Yemen; Fig. 2a). Socotra, located at 12°N in the Northern Indian Ocean, is ideally located to monitor both variations in the mean latitudinal position of the ITCZ and variations in monsoon intensity as it is located within the axis of the Findlater Jet (Fig. 2b; Findlater, 1969). By comparing all stalagmite records, sampled along a \sim1200 km long north–south transect that spans three different precipitation regimes (Fig. 2a), we hope to monitor past displacements in the mean latitudinal position of the ITCZ and variations in monsoon intensity as it is located within the axis of the Findlater Jet (Fleitlander, 1969). By comparing all stalagmite records, sampled along a \sim1200 km long north–south transect that spans three different precipitation regimes (Fig. 2a), we hope to monitor past displacements in the mean latitudinal position of the ITCZ and associated changes in the location of the rainfall belt in greater detail. Finally, we compare multiple monsoon records from the ISM and ASM domains to demonstrate that monsoon precipitation decreased gradually since the beginning of the middle Holocene in response to the progressive decrease in summer insolation.

2. Climatic and environmental settings

2.1. Atmospheric circulation in the Indian Ocean

The annual migration of the ITCZ and seasonal development of the monsoon winds are key-components of the climatology in the Indian Ocean and the surrounding areas. In spring the ITCZ migrates northward across the Indian Ocean and reaches its northernmost position during boreal summer (Fig. 2b). From June to September, a strong low-level monsoonal air flow is generated by a strong pressure gradient between the low-pressure cell over the Tibetan Plateau and a high-pressure cell over the Southern Indian Ocean (Fig. 2b). North of the equator, a strong southwesterly air flow, also known as the Somali or Findlater Jet (Findlater, 1969) transports large quantities of moisture, that is then released as monsoon precipitation over some parts of Southern Arabia and the Indian subcontinent. The release of latent heat through condensation of moisture is an additional and important forcing of the ISM as it further strengthens and maintains the surface low pressure over the Asian landmass (Webster et al., 1998). In autumn the ITCZ then retreats southward and reaches its southernmost position at approximately 25°S in January (Fig. 2c). The reversed pressure gradient during the winter months generates the moderate and dry northeast monsoon.

2.2. Climate settings at the cave sites

Stalagmites were collected in four caves located in three areas (Fig. 2a): (1) Northern Oman (Hoti Cave; 23°05′N, 57°21′E; \sim800 m above sea level (masl)), (2) Southern Oman (Qunf Cave; 17°10′N, 54°18′E; 650 masl and Dofore Cave, 17°07′N, 54°05′E; \sim150 masl) and (3) Socotra (Yemen, Dimarshim Cave; 12°33′N, 53.41′E; \sim350 masl). As study sites are located along a north–south transect of \sim1200 km, seasonal distribution of rainfall differs...
significantly (Fig. 2a), being uni-modal in Oman and bi-modal on Socotra. In Northern Oman today, the primary source of rainfall is Mediterranean frontal systems, which are most frequent between January and March (Weyhenmeyer et al., 2002). Additional but minor sources are local convective storm cells which occur during very hot summers and tropical cyclones that reach Northern Oman once every 5–10 years (Weyhenmeyer et al., 2000, 2002).

Total annual rainfall in Northern Oman is low and typically ranges from ~55 to 255 mm yr

\[^{-1}\]

in the vicinity of Hoti Cave (station Al Hamra, 700 masl, 1974–97). In contrast to Northern Oman, Southern Oman receives more than 80% of its total annual rainfall, ranging between 200 and 600 mm yr

\[^{-1}\]

during the summer monsoon season (regionally known as “Khareef”), which lasts between July and September. Socotra, the southernmost study site, experiences two rainy seasons: one lasting from May to June and one from September to December (Mies and Beyhl, 1996). Both rainy seasons are associated with passages of the ITCZ. Virtually no rainfall occurs during the northeast and southwest monsoon, as the strong divergent surface airflow, particularly during the summer monsoon, suppresses convergence of moisture over the northern Indian Ocean. Total annual rainfall on Socotra varies between approximately 120 and 400 mm yr

\[^{-1}\]

(Mies and Beyhl, 1996).

3. Materials and methods

Six stalagmites, between 30 and 100 cm long, were collected as whole samples or by drilling. All specimens were cut parallel to their growth axis using a diamond saw and then polished. The chronologies are all based on a total of 68 Uranium-series ages (Table 1), which were in part performed on a multi-collector thermal ionization mass spectrometer (TIMS) and in part on a multi-collector inductively coupled plasma mass spectrometer (MC ICP–MS).

For MC ICP–MS analyses, 0.1–0.2 g of sample chip were spiked with a mixed 229Th–236U spike and dissolved in HNO3 and taken to dryness. Organic material, if present, was attacked with 0.5 ml of H2O2+HNO3(conc). U and Th were separated on anion columns using a 0.5 ml Dowex 1 × 8 resin bed. A first separation, using 7N HNO3, produced a pure Th fraction and an impure U fraction, which was purified on the same columns using 6N HCl. After evaporation, the fractions were again treated with H2O2+HNO3(conc) to remove organic remnants from the resin.

U and Th mass spectrometry was done on a Nu Instruments® multicolonlector ICP–MS equipped with an ESI Apex® desolvating system without membrane and using a self-aspirating nebulizer. With an uptake rate of ca 50 μl/min the ion yield for U and Th was about 70 V/ppm. U measurements were done from 0.5 N HNO3 solutions in static mode, whereby masses 236 and 234 were measured in parallel electron multipliers and 235 and 238 in Faraday cups. Baselines were taken on either side of peaks and interpolated. The electron multiplier yield was calibrated every 4 samples by running a NIST U050 solution. The 235U/233U ratio was used for instrumental fractionation correction if the 238U signal was greater than 1 V (10

\[^{-11}\] A); if smaller, the fractionation factor was input from bracketing standards. Normal washout time for U between samples was 5 min with 0.5 N HNO3 (<1‰ memory); longer washout times were used where significant isotope differences between samples were expected. Runs on the NIST U960 standard yielded δ(234U/238U) = –37.2 ± 2.1‰ (1SD, N = 35), where the equilibrium ratio is after Cheng et al. (2000). Th measurements were made from 3 N HCl solutions in a two-cycle multicollector dynamic mode, whereby one electron multiplier, equipped with a WARP filter, alternately measured masses 229 and 230. U standard was added to Th run solutions for two reasons, first, to enable correction for instrumental mass fractionation, and second, to provide a reference isotope (238) to eliminate the effects of plasma flicker in obtaining the 229Th/230Th ratios. Variations of U and Th signals during the run are fully correlated if no organic matter is present. Baselines were measured at 229.5 and 230.5 for samples and standards with significant (> 10

\[^{-12}\] A) 232Th. For stalagmites the baseline was quite flat and measured at 230.5. Washout time was 15 min to 1‰ of the Th signal, if the capillary and nebulizer were free of organics.

Analytical procedures and details of TIMS measurements are described in detail by Neff et al. (2001) and Fleitmann et al. (2003a). As a result of spike recalibration in 2005 and calibration against the “HU-1” uraninite standard solution (assuming that uraninite is at secular equilibrium for the 230Th–234U–238U sequence), previously published TIMS Th–U dates were by approximately 1% too young. The updated Th–U dates are displayed in Table 1.

A total of 5400 oxygen isotope samples were measured. For each analysis, ~5 mg of powder was drilled from the sample and analyzed with an on-line, automated carbonate preparation system (Kiel III). All oxygen isotope values are reported in parts per mil (‰) relative to the Vienna Pee Dee Belemnitite standard (VPDB).

4. Results

4.1. Age calibration

Age-depth plots for all stalagmites are shown in Fig. 3a–f. The chronologies of all stalagmites are based on either interpolation between individual Th–U samples or polynomial fit to the age-depth curve of the Th–U data.
<table>
<thead>
<tr>
<th>Sample</th>
<th>Depth (mm)</th>
<th>c(Th) (ppb)</th>
<th>±</th>
<th>c(U) (ppb)</th>
<th>±</th>
<th>(234U/238U)</th>
<th>±</th>
<th>(230Th/232Th)</th>
<th>±</th>
<th>(230Th/234U)</th>
<th>±</th>
<th>Age (ka)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H5</td>
<td>5</td>
<td>198.676</td>
<td>2.204</td>
<td>3362.0</td>
<td>9.3</td>
<td>1.4999</td>
<td>0.0041</td>
<td>5.15</td>
<td>0.16</td>
<td>0.0569</td>
<td>0.0016</td>
<td>6.414</td>
</tr>
<tr>
<td>H5</td>
<td>25</td>
<td>55.876</td>
<td>0.676</td>
<td>9023.2</td>
<td>51.5</td>
<td>1.5133</td>
<td>0.0056</td>
<td>44.53</td>
<td>1.01</td>
<td>0.0286</td>
<td>0.0011</td>
<td>6.582</td>
</tr>
<tr>
<td>H5</td>
<td>65</td>
<td>8.029</td>
<td>0.020</td>
<td>4978.1</td>
<td>7.0</td>
<td>1.6128</td>
<td>0.0056</td>
<td>201.46</td>
<td>1.09</td>
<td>0.0257</td>
<td>0.0010</td>
<td>7.391</td>
</tr>
<tr>
<td>H5</td>
<td>98</td>
<td>10.309</td>
<td>0.075</td>
<td>3950.7</td>
<td>10.0</td>
<td>1.6134</td>
<td>0.0067</td>
<td>136.67</td>
<td>1.70</td>
<td>0.0270</td>
<td>0.0008</td>
<td>8.119</td>
</tr>
<tr>
<td>H5</td>
<td>135</td>
<td>7.034</td>
<td>0.035</td>
<td>4419.8</td>
<td>14.1</td>
<td>1.6003</td>
<td>0.0060</td>
<td>227.21</td>
<td>2.16</td>
<td>0.0273</td>
<td>0.0006</td>
<td>8.153</td>
</tr>
<tr>
<td>H5</td>
<td>160</td>
<td>10.832</td>
<td>0.081</td>
<td>4226.6</td>
<td>10.7</td>
<td>1.5887</td>
<td>0.0063</td>
<td>136.43</td>
<td>1.79</td>
<td>0.0177</td>
<td>0.0018</td>
<td>8.083</td>
</tr>
<tr>
<td>H5</td>
<td>175</td>
<td>21.750</td>
<td>0.318</td>
<td>4074.0</td>
<td>19.7</td>
<td>1.5864</td>
<td>0.0129</td>
<td>71.24</td>
<td>2.15</td>
<td>0.0077</td>
<td>0.0021</td>
<td>8.788</td>
</tr>
<tr>
<td>H5</td>
<td>205</td>
<td>22.029</td>
<td>0.042</td>
<td>3922.1</td>
<td>5.9</td>
<td>1.5946</td>
<td>0.0034</td>
<td>63.92</td>
<td>0.34</td>
<td>0.0729</td>
<td>0.0014</td>
<td>8.224</td>
</tr>
<tr>
<td>H5</td>
<td>235</td>
<td>15.067</td>
<td>0.181</td>
<td>4283.4</td>
<td>14.1</td>
<td>1.5891</td>
<td>0.0095</td>
<td>103.14</td>
<td>3.91</td>
<td>0.0742</td>
<td>0.0027</td>
<td>8.381</td>
</tr>
<tr>
<td>H5</td>
<td>255</td>
<td>14.525</td>
<td>0.249</td>
<td>3827.0</td>
<td>32.4</td>
<td>1.5765</td>
<td>0.0133</td>
<td>103.35</td>
<td>2.74</td>
<td>0.0809</td>
<td>0.0016</td>
<td>9.164</td>
</tr>
<tr>
<td>H5</td>
<td>295</td>
<td>90.878</td>
<td>0.800</td>
<td>4474.9</td>
<td>16.1</td>
<td>1.6292</td>
<td>0.0088</td>
<td>21.03</td>
<td>0.38</td>
<td>0.0829</td>
<td>0.0014</td>
<td>9.405</td>
</tr>
<tr>
<td>H5</td>
<td>325</td>
<td>62.874</td>
<td>0.444</td>
<td>4956.1</td>
<td>10.0</td>
<td>1.5440</td>
<td>0.0047</td>
<td>32.16</td>
<td>0.35</td>
<td>0.0846</td>
<td>0.0007</td>
<td>9.605</td>
</tr>
<tr>
<td>H5</td>
<td>350</td>
<td>40.475</td>
<td>0.102</td>
<td>4118.2</td>
<td>6.3</td>
<td>1.6366</td>
<td>0.0025</td>
<td>44.89</td>
<td>0.20</td>
<td>0.0860</td>
<td>0.0003</td>
<td>9.867</td>
</tr>
<tr>
<td>H5</td>
<td>400</td>
<td>10.175</td>
<td>0.037</td>
<td>4009.8</td>
<td>6.0</td>
<td>1.5427</td>
<td>0.0039</td>
<td>162.77</td>
<td>1.00</td>
<td>0.0873</td>
<td>0.0005</td>
<td>9.920</td>
</tr>
<tr>
<td>H5</td>
<td>435</td>
<td>22.518</td>
<td>0.163</td>
<td>3034.6</td>
<td>6.4</td>
<td>1.5809</td>
<td>0.0072</td>
<td>58.76</td>
<td>0.80</td>
<td>0.0892</td>
<td>0.0011</td>
<td>10.147</td>
</tr>
<tr>
<td>H5</td>
<td>457</td>
<td>0.460</td>
<td>0.003</td>
<td>3379.3</td>
<td>4.8</td>
<td>1.5731</td>
<td>0.0048</td>
<td>3080.48</td>
<td>45.72</td>
<td>0.0887</td>
<td>0.0019</td>
<td>10.031</td>
</tr>
<tr>
<td>H5</td>
<td>480</td>
<td>24.588</td>
<td>0.246</td>
<td>3461.1</td>
<td>10.4</td>
<td>1.5746</td>
<td>0.0055</td>
<td>60.39</td>
<td>1.80</td>
<td>0.0800</td>
<td>0.0025</td>
<td>10.012</td>
</tr>
<tr>
<td>H5</td>
<td>498</td>
<td>5.842</td>
<td>0.044</td>
<td>4159.4</td>
<td>9.2</td>
<td>1.5605</td>
<td>0.0035</td>
<td>306.45</td>
<td>3.79</td>
<td>0.0901</td>
<td>0.0009</td>
<td>10.250</td>
</tr>
</tbody>
</table>

Table 1
Results of Uranium-series dating. Th–U ages measured using MC–ICP–MS are marked with a star (*) symbol.
Table 1 (continued)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Depth (mm)</th>
<th>c(Th) (ppb) ±</th>
<th>c(U) (ppb) ±</th>
<th>(234U/238U) ±</th>
<th>(230Th/232Th) ±</th>
<th>(230Th/234U) ±</th>
<th>Age (ka) ±</th>
</tr>
</thead>
<tbody>
<tr>
<td>S4</td>
<td>121</td>
<td>1.025</td>
<td>0.010</td>
<td>267.4</td>
<td>0.5</td>
<td>1.0413</td>
<td>0.0049</td>
</tr>
<tr>
<td>S4*</td>
<td>135</td>
<td>1.946</td>
<td>0.006</td>
<td>416.7</td>
<td>1.1</td>
<td>1.0455</td>
<td>0.0023</td>
</tr>
<tr>
<td>S4*</td>
<td>168</td>
<td>3.171</td>
<td>0.018</td>
<td>499.3</td>
<td>1.3</td>
<td>1.0385</td>
<td>0.0046</td>
</tr>
<tr>
<td>S4*</td>
<td>205</td>
<td>2.792</td>
<td>0.014</td>
<td>472.8</td>
<td>1.2</td>
<td>1.0585</td>
<td>0.0031</td>
</tr>
<tr>
<td>S4*</td>
<td>220</td>
<td>2.223</td>
<td>0.012</td>
<td>489.3</td>
<td>1.2</td>
<td>1.0538</td>
<td>0.0028</td>
</tr>
<tr>
<td>S4</td>
<td>230</td>
<td>2.660</td>
<td>0.005</td>
<td>409.8</td>
<td>1.1</td>
<td>1.0502</td>
<td>0.0048</td>
</tr>
<tr>
<td>S4*</td>
<td>395</td>
<td>6.698</td>
<td>0.036</td>
<td>603.0</td>
<td>1.5</td>
<td>1.0370</td>
<td>0.0027</td>
</tr>
<tr>
<td>S4*</td>
<td>415</td>
<td>4.720</td>
<td>0.025</td>
<td>596.7</td>
<td>1.5</td>
<td>1.0101</td>
<td>0.0033</td>
</tr>
<tr>
<td>S4*</td>
<td>420</td>
<td>2.676</td>
<td>0.014</td>
<td>548.9</td>
<td>1.5</td>
<td>1.0254</td>
<td>0.0014</td>
</tr>
<tr>
<td>S4</td>
<td>421</td>
<td>4.498</td>
<td>0.044</td>
<td>583.1</td>
<td>1.3</td>
<td>1.0326</td>
<td>0.0066</td>
</tr>
<tr>
<td>D1*</td>
<td>312</td>
<td>0.281</td>
<td>0.003</td>
<td>438.9</td>
<td>1.1</td>
<td>1.3367</td>
<td>0.0015</td>
</tr>
<tr>
<td>D1*</td>
<td>432</td>
<td>0.155</td>
<td>0.001</td>
<td>466.5</td>
<td>1.3</td>
<td>1.3431</td>
<td>0.0033</td>
</tr>
<tr>
<td>D1*</td>
<td>565</td>
<td>0.153</td>
<td>0.002</td>
<td>450.0</td>
<td>1.2</td>
<td>1.3348</td>
<td>0.0019</td>
</tr>
<tr>
<td>D1*</td>
<td>665</td>
<td>0.145</td>
<td>0.001</td>
<td>459.2</td>
<td>1.2</td>
<td>1.3431</td>
<td>0.0010</td>
</tr>
<tr>
<td>D1*</td>
<td>810</td>
<td>0.087</td>
<td>0.001</td>
<td>496.2</td>
<td>1.4</td>
<td>1.3557</td>
<td>0.0023</td>
</tr>
<tr>
<td>D1*</td>
<td>875</td>
<td>0.373</td>
<td>0.026</td>
<td>465.7</td>
<td>1.2</td>
<td>1.3399</td>
<td>0.0012</td>
</tr>
<tr>
<td>D1*</td>
<td>960</td>
<td>0.310</td>
<td>0.002</td>
<td>381.8</td>
<td>1.0</td>
<td>1.3427</td>
<td>0.0019</td>
</tr>
<tr>
<td>D1*</td>
<td>1040</td>
<td>0.386</td>
<td>0.005</td>
<td>356.8</td>
<td>0.9</td>
<td>1.3368</td>
<td>0.0011</td>
</tr>
<tr>
<td>D1*</td>
<td>1115</td>
<td>0.414</td>
<td>0.002</td>
<td>331.7</td>
<td>0.9</td>
<td>1.3587</td>
<td>0.0039</td>
</tr>
</tbody>
</table>

Fig. 3. (a–f) Age versus depth plots for studied stalagmites (see also Table 1). Bold black lines in figures (d) and (e) are based on annual layer counts. The number of counted layers is in good agreement with U–Th ages. Gray shaded area in (a) and (c) mark hiatus. Gray shaded area in Fig. 3e marks the proportion of S4 for which no reliable Th–U could be obtained due to abundant dust and contamination with 232Th.
For stalagmites S3 and S4 from Kahf Defore the combination of annual layer counts and Th–U dating results in floating but more precise chronologies (Figs. 3d and e). Average growth rates are high and vary between 0.05 and 0.6 mm yr\(^{-1}\). In some cases, detritus corrections were needed when \(^{230}\text{Th}/^{232}\text{Th}\) ratios were high (see Table 1). If necessary, ages were corrected assuming a \(^{232}\text{Th}/^{238}\text{U}\) ratio of 3.8 (see Frank et al., 2000 for details). Detritus corrections were needed for stalagmites S3 and S4 from Kahf Defore (Southern Oman) and stalagmites H5 and H12 from Hoti Cave (Northern Oman). We must, however, emphasize that their chronologies are either confirmed by annual layer counts (S3 and S4, Figs. 3d, e) or by Th–U ages (H5 and H12) for which no or minor detritus correction was needed (see Table 1 for details). Age versus depth plots of all stalagmites show that almost all Th–U ages are in stratigraphic order (Fig. 3a–f), enabling us to establish precise chronologies, with age uncertainties typically varying between 1% and 3% of the absolute age.

4.2. Oxygen isotope profiles

Profiles of \(\delta^{18O}\) variations, in which their average temporal resolution varies between 1.5 and 10 years, are shown in Fig. 4. Unfortunately, none of the \(\delta^{18O}\) profiles covers the entire Holocene period. Nonetheless the longest profile, derived from stalagmite Q5 (Qunf Cave, Southern Oman), covers most of the Holocene with the exception of two brief periods from 2.6 to 1.4 and 0.4 ka BP to present. The Q5 \(\delta^{18O}\)-profile is supported by two overlapping profiles from stalagmites S3 and S4 (Defore Cave, Southern Oman). In Northern Oman, the composite \(\delta^{18O}\) record is based on stalagmites H12 and H5 from Hoti Cave, which cover the intervals between 10.1 and 5.2 and 2.5 ka BP to present. The Holocene record from Dimarshim Cave on Socotra continuously covers the interval from 4.4 ka BP to present.

\(\delta^{18O}\) values in stalagmite H5 (Hoti Cave, Northern Oman) decrease abruptly between 10 and 9.2 ka BP from \(-4\) to \(-5\%\) (VPDB), and then vary around an average value of \(-4.9\%\) (VPDB) from 9.2 to 6.3 ka BP (Fig. 4). An abrupt positive shift to less negative \(\delta^{18O}\) occurs at around 6.3 ka BP. In sample H12, \(\delta^{18O}\) values for the following interval between 6.3 and 5.2 ka BP average \(-3.2\%\), being approximately 1% more negative than present-day \(\delta^{18O}\) values. A depositional hiatus exists from 5.2 to 2.5 ka BP. Between 2.5 and present (A.D. 1997) \(\delta^{18O}\) values vary by approx. 3% around an average value of \(-2.2\%\).

For Southern Oman, stalagmites S4 (Kahf Defore) and Q5 (Qunf Cave) show a simultaneous decrease in \(\delta^{18O}\) from \(-8.8\%\) to \(-2.0\%\) and \(-0.2\%\) to \(-1.3\%\), respectively between 10.6 and 9.8 ka BP (Fig. 4). \(\delta^{18O}\) values of stalagmite Q5 remain generally low between 9.8 and 7.8 ka BP and then increase gradually from \(-2.2\%\) to almost modern values of \(-0.9\%\) at 2.7 ka BP. As Kahf Defore (~150 masl) is located at lower altitude than Qunf Cave (~650 masl), the overall difference of approximately 0.6% in \(\delta^{18O}\) between S4 and Q5 can be attributed to the so-called “altitude effect”, which is 0.1–0.15% per 100 m in Southern Oman (Clark et al., 1987; Fleitmann et al., 2004). The D1 oxygen isotope record from Socotra, the southernmost of all studied sites, covers the last 4.4 ka B.P. and reveals a long-term decrease in \(\delta^{18O}\) from values of around \(-3.0\%\) to modern values of \(-4.2\%\) (Fig. 4). All records show distinct decadal to multi-decadal variations in \(\delta^{18O}\) of up to 2%, which are superimposed on the long-term trends.

5. Paleoclimatic significance of oxygen isotope ratios

Based on previously published results from Oman and Yemen, we interpret the oxygen isotope ratios of stalagmite calcite to primarily reflect variations in the amount of rainfall (termed “amount effect”; Dansgaard, 1964; Rozanski et al., 1992), with more negative \(\delta^{18O}\) reflecting higher monsoon rainfall (Burns et al., 1998, 2001, 2003; Neff et al., 2001; detailed discussion in Fleitmann et al., 2004). This interpretation is substantiated by isotopic time series of tropical precipitation (Dansgaard, 1964; Rozanski et al., 1992; Johnson and Ingram, 2004) and paleoclimate records from the ASM domain (e.g., Wei and Gasse, 1999; Wang et al., 2001, 2005; Dykoski et al., 2005), which confirm the inverse relationship between \(\delta^{18O}\) and the amount of precipitation in regions affected by monsoons. Additional evidence for our interpretation comes from the statistically significant correlation between \(\delta^{18O}\) and the thickness of annual bands, which were measured on four stalagmites from Kahf Defore in Southern Oman (Burns et al., 2002; Fleitmann et al., 2004). Numerous studies performed on annually laminated stalagmites (e.g., Genty and Quinif, 1996; Polyak and Asmerom, 2001; Yadava et al., 2004) suggest that the thickness of annual bands is primarily controlled by the drip rate, which in turn closely relates to the amount of precipitation (higher drip rate–higher surface precipitation). In stalagmites from Kahf Defore, more negative \(\delta^{18O}\) values (higher precipitation) anti-correlate with thicker growth bands (higher drip rate) and vice versa, with Pearson’s correlation coefficients varying between \(-0.6\) and \(-0.4\) (Fleitmann et al., 2004). Although evaporation can affect \(\delta^{18O}\) of precipitation, cave seepage water and, thus, speleothem calcite, this process acts in the same “direction” as the “amount effect” as evaporation is reduced during intervals of higher precipitation (Burns et al., 1998, 2001; Fleitmann et al., 2004). However, we must emphasize that the effects of evaporation on \(\delta^{18O}\) of speleothem calcite were observed in one cave only: viz. Defore Cave. In this cave relative humidity (rH) is relatively low (rH = 92–98%), and even here modern calcite is within 1% of the expected equilibrium value (Burns et al., 2002; Fleitmann et al., 2004).
In addition to the “amount effect”, δ¹⁸O values in stalagmites from Northern Oman also reflect shifts in the moisture source over time, viz. from a southern moisture source (Indian Ocean, monsoon and cyclones) during the early to mid-Holocene to a northern moisture source (Eastern Mediterranean, winter depressions) during the late Holocene (Burns et al., 1998, 2001; Fleitmann et al., 2003b). Such a change in the source of moisture is accompanied by a significant positive shift of approximately 2–4‰ in δ¹⁸O, as rainfall from the northern moisture source is isotopically enriched compared to rainfall from the southern moisture source (Burns et al., 1998, 2001; Weyhenmeyer et al., 2000, 2002; Fleitmann et al., 2003b).
One important question for the studied sites is whether the amount of monsoon precipitation in Oman is primarily related to the intensity of the ISM or to the latitudinal position of the ITCZ and convective activity within it, or some combination. We propose that both are important controls for the amount of monsoon precipitation for the following two reasons. First, the low-level monsoon winds transport large amounts of moisture from the Southern Indian Ocean, which fuel the convective cells within or along the ITCZ. Second, the release of latent heat during the monsoon months is an important driving force for the intensity of the monsoon (e.g., Webster et al., 1998). From there, the advection of moisture is a major control for the convective activity within or along the ITCZ and, due to the release of latent heat, for the strength of the ISM. Thus, we suggest that the ITCZ and the ISM vary to a certain extent in concert; stronger surface heating during boreal summer in response to greater solar insolation would pull the ITCZ northward and intensify monsoon circulation due to a greater surface heating of the Eurasian landmass and the resultant enhanced land-sea thermal contrast (Webster et al., 1998). Moreover, stronger monsoon circulation would enhance cross-equatorial transport of moisture, which in turn intensifies convection within the summer ITCZ and ISM circulation due to the greater release of latent heat. This positive feedback mechanism would lead to higher monsoon precipitation in Oman and other areas located close to the summer ITCZ. Although there are no long-term instrumental data available to verify the accuracy of the proposed and possibly oversimplified relationship, there is a strong correlation between wind strength over the Arabian Sea and monsoon precipitation over India and Southeast Asia (Ju and Slingo, 1995; Halpern and Woiceshyn, 2001), with deficit rainfall over west India being associated with a weaker Somali Jet. It is plausible that this linkage may also act on longer timescales ranging from decadal to centennial.

An area that is particularly sensitive to changes in the mean latitudinal position of the ITCZ and convective activity within it is Southern Oman. Here, convective cloud development is currently prevented by a temperature inversion located over Southern Oman (Findlater, 1969; Narayanan and Rao, 1981; Sirocko et al., 1991; Fig. 5a), whereas the height of this temperature inversion is dynamically linked to the mean latitudinal summer position of the ITCZ and to the monsoon wind pattern over Southern Arabia. A northward shift of the ITCZ into the Arabian Peninsula, as indicated by lacustrine sediments (McClure, 1976; Lézine et al., 1998) and dune deposits (Bray and Stokes, 2004), would lift the height of the temperature inversion, leading to stronger convective cloud development and higher monsoonal rainfall over Southern Oman (Fig 5b). Hence, the Q5 $\delta^{18}O$ time series is very sensitive to variations in the latitudinal summer position of the ITCZ over the Arabian Peninsula. Due to the “amount effect” (Dansgaard, 1964; Rozanski et al., 1992), $\delta^{18}O$ values of precipitation become more negative (depleted).

Fig. 5. (a) Schematic figure of modern summer circulation pattern over Southern Oman. The black dot shows the location of Qunf Cave. The black dotted line shows the position of the temperature inversion and the black dashed line the location of the ITCZ. (b) Schematic figure of summer circulation pattern at around 7 ka BP.
6. Holocene ITCZ and monsoon dynamics in Oman as revealed by stalagmite δ¹⁸O-profiles

6.1. Early Holocene (11–8 ka BP)

The stalagmite δ¹⁸O profiles indicate a rapid increase in ISM precipitation between ~10.6 and 9.7 ka BP in Southern Oman and ~10.1 and 9.2 ka BP in Northern Oman (Fig. 6). This is good agreement with Arabian Sea upwelling records (Sirocko et al., 1993; Overpeck et al., 1996; Jung et al., 2002; Ivanochko et al., 2005) and lake levels from India (e.g., Enzel et al., 1999). Although some of these records show a two-step intensification of the monsoon at ~13–12.5 and 11–10 ka BP (e.g., Sirocko et al., 1993; Overpeck et al., 1996; Ivanochko et al., 2005), there is currently no speleothem evidence in Oman for an onset in monsoon precipitation prior to ~10.6 (Fleitmann et al., 2003a). This may indicate that the ITCZ and the associated rain belt remained south of Oman prior to ~10.6 ka BP.

In Oman the onset and increase in monsoon precipitation lags the peak in summer (June) insolation (Berger and Loutre, 1991), the major driver of the ISM on orbital timescales (Prell and Kutzbach, 1987; Clemens et al., 1991), by approximately 1.5 ka (Fig. 6). This delayed response of the ISM to insolation forcing is also well documented in previously published paleoclimate records from this area and there is now a broad consensus that glacial boundary forcing, such as North Atlantic air temperatures and Eurasian snow cover, suppressed the effects of solar insolation forcing during the last deglaciation until the beginning of the Holocene (e.g., Prell and Kutzbach, 1992; Sirocko et al., 1993; Overpeck et al., 1996; Gupta et al., 2003; Fleitmann et al., 2003a, b; Dykoski et al., 2005).

The H5, S4 and Q5 δ¹⁸O-profiles also closely resemble the GRIP, NGRIP and DYE-3 δ¹⁸O-records on multi-decadal timescales (Johnsen et al., 2001; Fig. 6). Taking age uncertainties of between 100 and 200 years for each record into account, colder North Atlantic air temperatures (more negative δ¹⁸O in the ice core δ¹⁸O time series) tend to coincide with reduced monsoon precipitation (more positive δ¹⁸O in the stalagmite) and vice versa. In particular two distinct climatic events at ~8.2 ka BP (so-called “8.2 ka cold event”; Alley et al., 1997) and ~9.2 ka BP stand out in

Fig. 6. (a) Summer insolation curve (June) for 30°N (Berger and Loutre, 1991). (b1–3) DYE 3, GRIP and NGRIP δ¹⁸O ice core records (Dansgaard et al., 1993; Johnsen et al., 2001). In order to test the statistic significance of the 9.2 and 8.2 ka events, we constructed a robust 95% confidence band (shaded) as follows. A running window (2 k + 1 points) was used to calculate the median as an estimate of the time-dependent variability (Mudelsee, 2006). The 95% confidence band is given by median ±2.96 MAD. A normal distribution with standard deviation σ has MAD = 1.48σ and a 95% confidence interval of ±2σ. We selected following values of k for the unevenly spaced time series to obtain average window widths in the order of 600–1000 years, that is, to permit millennial-scale background and variability variations. NGRIP, k = 25; GRIP, k = 89; DYE-3, k = 25. Calculations were made using the software CLIM-X-DETECT (Mudelsee, 2006). (c–e) Stalagmite δ¹⁸O records from northern (H5) and southern Oman (Q5 and S4). Note, the H5 time series differs from that presented by Neff et al. (2001) as it is not tuned to the tree ring based ¹⁴C record (Stuiver et al., 1998). (f) δ¹⁸O-profile of stalagmite DA from Dongge Cave, China (Dykoski et al., 2005; see Fig. 1 for location). The increase in ISM and ASM precipitation clearly lags behind summer insolation by approximately 1.5 ka. Notable weak ISM and ASM events, such as at 9.2 and 8.2 ka BP, correlate with cold intervals in ice cores from Greenland.
all δ^{18}O time series shown in Fig. 6, including a recently published stalagmite-based ASM record from Dongge Cave in China (Dykoski et al., 2005). While there is evidence that the 8.2 ka cold event was triggered by a catastrophic outburst from Lake Agassiz through the Hudson strait into the northern North Atlantic (Barber et al., 1999), the cause of the 9.2 ka event is not yet fully known. However, this event coincides with an outburst of meltwater at ~9.17 ka BP, although the volume of meltwater released in this outburst was significantly smaller than that released at ~8.2 ka (~0.27 Sv versus 5.1 Sv (1 Sverdrup = 1×10^6 m3 s$^{-1}$) Teller and Leverington, 2004). Nevertheless, the meltwater outbursts at 9.2 and 8.2 ka BP were probably sufficient to weaken the thermohaline circulation, which then resulted in cooler North Atlantic air temperatures, as are well documented in three Greenland ice cores (DYE 3, NGRIP, GRIP; Johnsen et al., 2001; Fig 6). The resultant winter cooling and associated enhanced Eurasian snow cover weakened monsoon circulation via the well-known snow cover monsoon linkage (e.g., Barnett et al., 1988). Greater extent of snow cover over western Eurasia affects monsoon circulation, as spring heating of the Eurasian landmass is reduced due to higher albedo and higher energy consumption to melt the excess snow (Barnett et al., 1988; Ye and Bao, 2001). This reduction in surface heating of the Tibetan plateau during the following summer then leads to a decreased land-sea pressure gradient and weaker summer monsoon circulation. Likewise, the resultant reduced cross-equatorial transport of moisture by low-level monsoon winds further reduces convective activity within the ITCZ, leading to reduced precipitation in Oman and China (Fig. 6).

An interesting feature in all speleothem-based monsoon time series shown in Fig. 6 is the presence of two distinct δ^{18}O excursions at around 8.2 ka BP, while there is only one δ^{18}O anomaly at ~8.18 \pm 0.04 ka BP in the DYE-3, NGRIP and GRIP ice cores from Greenland. In H5 (Hoti Cave, Northern Oman) and Q5 (Qunf Cave, Southern Oman) both events are centered at 8.17 and 8.06 ka BP and 8.19 and 8.02 ka BP, respectively. This timing is consistent with two anomalies centered at 8.26 \pm 0.06 and 8.08 \pm 0.07 ka BP in a well-dated stalagmite record from Dongge Cave in China (Fig. 6; Dykoski et al., 2005). Due to chronological uncertainties, however, it remains unclear which of the two monsoon anomalies relate to the 8.2 ka cold event.

To summarize, the δ^{18}O-profiles suggest a rapid northward displacement in the mean latitudinal position of the summer ITCZ and the belt of maximum monsoon precipitation between ~10.6 and ~9.2 ka BP, lagging behind maximum solar insolation by approximately 1.5 ka. Decadal to multi-decadal intervals of reduced monsoon precipitation tend to coincide with cooling events in the North Atlantic, indicating that the dynamics of the ITCZ and ISM and ASM are strongly influenced by northern North Atlantic climate variability.

6.2. Middle to Late Holocene (~8 ka BP—present day)

In Southern Oman, monsoon precipitation increases again shortly after the 8.2 ka cold event, peaks between ~7.9 and 7.6 ka BP and then decreases gradually towards present (Fig. 4). A major decrease in monsoon precipitation, indicated by an abrupt positive shift of 1% to 3% in δ^{18}O in the H5 (Hoti Cave) and Q5 (Qunf Cave) time series, occurs at ~6.3 ka BP simultaneously in Northern and Southern Oman (Figs. 4 and 7). In Hoti Cave (Northern Oman) this shift in δ^{18}O results from the southward retreat in the mean latitudinal position of the summer ITCZ and the associated monsoon rain belt, going along with a shift from a southern (Indian Ocean) to a northern moisture source (Mediterranean) and a change in the seasonality of precipitation, viz. from summer to winter precipitation (Fleitmann et al., 2003b; Fig. 7). Between ~6.3 and 5.2 ka BP stalagmite H12 δ^{18}O values vary around a mean of ~3% and are only slightly more negative than those of modern and late Holocene stalagmites from Hoti Cave (Fig. 4). Such intermediate δ^{18}O values most likely indicate that the mean latitudinal position of the summer ITCZ and the ISM rain belt were mainly located south of Hoti Cave (23°N) after ~6.3 ka BP, although we can not completely exclude that ISM precipitation reached Northern Oman occasionally. Qunf Cave in Southern Oman (17°N), however, was still affected by the ISM after ~6.3 ka BP (as it is today) and Q5 δ^{18}O values continuously decrease until ~2.7 ka BP when there was an interruption in stalagmite deposition (Figs. 3c and 4). The specific cause for the hiatus between ~2.7 and 1.4 ka BP is uncertain, as it could have been caused by a temporary blocking of the fissure-feeding stalagmite Q5 or a significant drop in monsoon precipitation. The latter explanation, however, seems to be more likely as the cessation of growth coincides with a marked arid interval on the Southern Arabian Peninsula, as indicated by a period of dune deposition in the Liwa region (Bray and Stokes, 2004) and the Wahiba Sands (Radies et al., 2004) in the United Arab Emirates and Oman, respectively (Fig. 7).

The long-term gradual change in the Q5 δ^{18}O profile indicates a continuous southward retreat of the summer ITCZ, a weakening in ISM strength and reduction in convective activity within or along the ITCZ in response to decreasing summer insolation (Fig. 8; Fleitmann et al., 2003a). In contrast to the gradual decrease in ISM precipitation recorded in stalagmite Q5 from Southern Oman, the D1 stalagmite δ^{18}O record from Socotra shows a long-term increase in inter-monsoon (spring and autumn) precipitation, as indicated by a long-term decrease in δ^{18}O since ~4.4 ka BP (Figs. 4 and 7). This anti-phase behavior between Southern Oman and Socotra seems to be apparent not only on millennial but also on multi-decadal timescales. In order to better reveal the anti-correlation between precipitation in Southern Oman and Socotra in greater detail, we compared the overlapping δ^{18}O profiles
of stalagmites Q5 and D1 (Fig. 9). This comparison shows a visible anti-correlation, with higher monsoon precipitation in Southern Oman coinciding with lower intermonsoon (spring/autumn) precipitation on Socotra. Because the onset and termination of the summer monsoon on Socotra determines the end of the spring and start of the autumn precipitation season respectively (as it is in Eastern Africa; Camberlin and Okoola, 2003), it is conceivable that...
Fig. 8. Comparison between stalagmite and other high-resolution proxy records from the ISM domain (see map for location). (a) June insolation curve for 30°N (Berger and Loutre, 1991). (b) Composite δ¹⁸O record (stalagmites H5 and H12) from Hoti Cave in Northern Oman (Neff et al., 2001) and (c) from Qunf Cave (Q5; Fleitmann et al., 2003a, b). (d) δ¹³C time series of Carex mulieensis remains from a Tibetan peat bog (Hong et al., 2003). (e) Abundance of G. bulloides in a core offshore Oman (Gupta et al., 2003). (f) Stalagmite δ¹⁸O record from Dimarshim Cave on Socotra. (g) Variations in δ¹⁸Owac in a core (3268G5) offshore the west coast of India (Sarkar et al., 2000). δ¹⁸Owac is defined as the difference in δ¹⁸O between cores 3268G5 and 2505 (see map for location).
a gradual shortening in the length of the summer monsoon season resulted in an extension of pre- and post-monsoon rainy season precipitation on Socotra. Interestingly, results of climate model simulations tend to support our interpretation of a progressive shortening in the duration of the ISM season since at ~7 ka BP (Bush, in press). Based on archeological evidences from northern India, Gupta (2004) also suggests that a longer early Holocene monsoon season and the resultant excess of moisture in the post-summer months might have provided, in addition to winter monsoon rains, enough moisture to enable a winter crop in the Indus Basin. Therefore, decreasing insolation forcing might have affected not only the mean latitudinal position of the summer ITCZ and intensity of the ISM but also the length of the monsoon season. A later advance and earlier retreat of the ITCZ in spring and autumn, respectively would lead to an on average shorter monsoon season over Southern Oman. If the movement of the ITCZ took place more slowly, a second effect would be a longer spring/autumn rainfall season over the northern Indian Ocean and Socotra, respectively. Provided that our interpretation is correct, our results should have far-reaching consequences for the interpretation of many monsoon proxy records in the ISM and other monsoon domains, as most paleoclimatic time series are commonly interpreted to reflect overall monsoon intensity, but not the duration of the monsoon season.

7. Comparison to paleoclimate records from the Indian and East Asian monsoon domains

As mentioned in the introduction, the nature and timing of the weakening of the ISM and ASM are still controversial and at least two hypotheses exist: The ISM and ASM weakened (1) abruptly between ~4.5 and 5.0 ka BP (Morrill et al., 2003) or (2) gradually since the beginning of the middle Holocene (Overpeck et al., 1996; Gupta et al., 2003; Fleitmann et al., 2003a; Ivanochko et al., 2005; Wang et al., 2005). To demonstrate that monsoon strength weakened gradually in response to slow changes in summer insolation, we compared our spe-}

![Stalagmite Q5 and D1 δ18O profiles](artefact)

Fig. 9. Comparison between overlapping δ18O-profiles from Southern Oman (Q5, Qunf Cave; black line) and Socotra (D1, Dimarshim Cave; gray line). Note the strong visible anti-correlation between D1 and Q5.
gradual southward migration of the summer ITCZ and monsoon rainfall belt, and a shortening of the summer monsoon season. Importantly, none of the records displayed in Fig. 7 shows clear evidence for a major transition in ISM intensity and precipitation between ~5 and 4.5 ka BP, contradicting the results presented by Morrill et al. (2003). However, we must emphasize that Morrill et al. (2003) found this abrupt mid-Holocene transition in only two records from the ISM domain (for details see Fig. 5D in Morrill et al., 2003), and three of the most recently published records, viz. those from Qunf Cave (Fleitmann et al., 2003a), the Oman (Gupta et al., 2003) and Somali margins (Ivanochko et al., 2005), could not have been included as they were not available to the authors at the time of their analyses.

An abrupt and synchronous mid-Holocene weakening in summer monsoon intensity is also not evident in continental monsoon records from the ASM monsoon domain (Fig. 8), such as the Hongyan peat bog (Hong et al., 2003), Lake Selin (Gu et al., 1993; Wei and Gasse, 1999), Lake Bangong (Fontes et al., 1996), Lake Quinghai (Lister et al., 1991) and Dongge Cave (Wang et al., 2005) isotopic records (see Fig. 1 for location). Although a short-lived reduction in monsoon precipitation between 5 and 4.5 ka BP is visible in some monsoon records, such as the Lake Bangong (Fontes et al., 1996) and Lake Selin records (Gu et al., 1993; Wei and Gasse, 1999), this climatic deterioration is clearly superimposed on a gradual long-term trend. The detailed comparison between stalagmite Q5 (Qunf Cave) from Southern Oman and stalagmite DA (Dongge Cave) from China reveals a very high degree of similarity in both long- and short-term changes in monsoon precipitation (Fig. 10). The monsoon anomaly at 6.3 ka BP is apparent in both stalagmite time series. This high correlation is remarkable as both caves are several thousand kilometers apart (Fig. 1) and underlines that the highly resolved Q5 and DA monsoon proxy records cannot be significantly biased by local climatic effects.

To sum up, none of the most recently published and comprehensive monsoon records (Gupta et al., 2003; Fleitmann et al., 2003a, b; Ivanochko et al., 2005; Dykoski et al., 2005; Wang et al., 2005) shows evidence for an abrupt and widespread change in monsoon intensity during the mid-Holocene (Figs. 7 and 8). This poses the question why some monsoon records suggest an abrupt shift in monsoon precipitation and wind strength while others do not. Because of the gradual southward migration of the ITCZ and the associated monsoon rain belt the timing and nature of the middle to late Holocene humid–arid transition depends on the geographical position of the monsoon proxy record (Fleitmann et al., 2003a). An abrupt humid–arid transition may occur in a particular record as soon as the mean latitudinal position of the ITCZ and the associated summer monsoon rainfall belt are displaced south of the study site, as, for instance, indicated by the abrupt isotopic shift at ~6.3 ka BP in the composite Hoti Cave stalagmite record from Northern Oman, a lacustrine record from the Emirates (Parker et al., 2004) and the Lunkaraskar lacustrine record from Northern India (Enzel et al., 1999) (Fig. 7). Supporting evidence for this assumption comes from a detailed analysis of lake level and loess records from across China (An et al., 2000; He et al., 2004), which show that the belt of maximum ASM precipitation shifted from the northwest to the southeast across China over the course of the Holocene and, as a result, the timing of the onset and termination of the Holocene climatic optimum is asynchronous (An et al., 2000; He et al., 2004). It is also conceivable that abrupt changes in some monsoon proxy records could have resulted of a non-linear response of the geologic record to subtle changes in the amount of precipitation. This is most likely true for lacustrine records in tropical and minor reduction in precipitation due to an average shorter monsoon season or higher variability in precipitation can, by altering the P–E balance from positive to negative, induce a fast and abrupt drop in lake level or even desiccation of the lake (e.g., Bradley, 1999; Gasse et al., 2000). In this case the observed abrupt shift in the lake level or isotopic composition does not necessarily relate to a major and abrupt weakening in monsoon intensity. Therefore, one must consider that abrupt changes in

Fig. 10. (a) Detailed comparison between two stalagmite records from Southern Oman (Q5; Qunf Cave) and China (DA, Dongge Cave). (b) Detailed comparison of the early-mid Holocene sections of Q5 (gray line) and DA (black line).
monsoon proxy records may relate to a shift in the mean latitudinal position of the ITCZ, a change in monsoon circulation or an archive-specific response to a rather subtle change in precipitation. Based on our own and most recently published data, we suggest that the mean summer ITCZ gradually retreated southward and the ISM weakened continuously since approximately 8–7 ka BP (Figs. 7 and 10). Not surprisingly, due to the progressive latitudinal southward shift of the summer ITCZ precipitation increased in the southern part of the Indian subcontinent, as indicated by decreasing salinity (increased freshwater input) at the southern tip of India (Sarkar et al., 2000; Fig. 7) despite the overall weakening in ISM intensity.

Overall, there is now mounting evidence that latitudinal shifts in the mean position of the ITCZ due to changes in insolation affect precipitation throughout the tropics (e.g., Haug et al., 2001; Maslin and Burns, 2000). Taken together, proxy records throughout the northern tropics suggest that post-glacial to modern precipitation patterns are controlled, probably on a global scale, by the gradual southward migration of the ITCZ and gradual weakening of the monsoons in response to orbitally induced decreasing summer insolation.

8. Conclusions

1. The comparison of Holocene stalagmite-based oxygen isotope profiles from Oman and Yemen (Socotra), the caves are located along a transect from 12 to 23°N, provides a new and more detailed view of the spatial and temporal variability of precipitation in the western part of the ISM domain.

2. During the early Holocene (10.5–9.5 ka BP) the mean latitudinal position of the summer ITCZ advances rapidly northward. However, convection within the ITCZ and ISM intensity is, despite orbitally induced maximum solar insolation, suppressed by glacial boundary conditions. Short-term (10–10^2 yr) changes in ISM intensity correlate well with high-latitude temperature variations recorded in Greenland ice cores, with reduced (enhanced) convection and lower (higher) ISM intensity being associated with cooler (warmer) high-latitude air temperatures.

3. From 7.8 ka BP to present the mean summer ITCZ continuously migrated southward and ISM intensity and precipitation decreased gradually in response to solar insolation. Furthermore, there is some evidence for a long term shortening of the summer monsoon season. Although abrupt events are apparent in all monsoon records, these events have a short duration and are clearly superimposed on a general long-term gradual trend. This suggests that there is no major abrupt weakening in ISM intensity between 5 and 4 ka BP. Rather, abrupt events detected in various lake records from the ISM domain can be best explained by either a non-linear archive-specific response to fluctuations in precipitation and/or simply by the geographical position. Monsoon records from key-areas in the ISM and ASM domain, such as from Southern Oman (Qunf Cave) or China (Dongge Cave; Wang et al., 2005), clearly demonstrate that the summer ITCZ retreated continuously southward and the ISM weakened gradually in response to decreasing orbital-induced solar insolation.

4. During the late-Holocene, the observed anti-correlation between monsoon precipitation in Southern Oman and inter-monsoon (spring/autumn) precipitation on Socotra possibly reveals that the mean seasonal cycle of the ISM has also changed in response to insolation forcing. Our data demonstrate a shortening in the length of the monsoon season in response to decreasing solar insolation. Together with the progressive shortening of the ISM season and gradual southward retreat of the summer ITCZ, the total amount of monsoon precipitation decreased in those areas located at the northern fringe of the ISM domain, but increased in areas closer to the equator.

Taken together, our results demonstrate that variations in monsoon precipitation resulted by changes in the mean latitudinal position of the ITCZ, the intensity of summer monsoon circulation and length of the monsoon season.

Acknowledgments

We thank Dr. Hilal Mohammad al Azri, Oman Ministry of Industry and Commerce for his support during fieldwork. We gratefully acknowledge the encouragement and assistance by the Environmental Protection Authority (EPA), especially Dr. Mohammed Sayeed Mashgary (President), Mr. Mahmood Shediaiwah, (Deputy), Mr. Abdul Rahman F. Al-Eryani (Manager Socotra Project, EPA) and his team. We would also like to thank Mr. Salem Daheq and his staff in the Socotra EPA office for their support during fieldwork on Socotra. We thank Diego Sanz for caving assistance. Finally, we thank Kathleen B. Johnson and James Russel for helpful comments on an earlier version of this manuscript. This work was supported by the Swiss National Science Foundation (Grant nos. 20135542).

