CFA.08
Enterprises at HCO: AAVSO and "S&T"

Leif J. Robinson ("Sky & Telescope")

Two organizations that continue to have a substantial impact on astronomy were born at Harvard College Observatory.

Observations by members of the American Association of Variable Star Observers, founded in 1911 by William Tyler Olcott, were from the very first warmly received by HCO director E. C. Pickering. He supported this effort by providing charts and publishing results. Ultimately, he invited the AAVSO to set up its office at HCO. This symbiosis collapsed in 1955, when Donald Menzel asked the AAVSO to leave the observatory.

"Sky & Telescope," an amalgam of two struggling periodicals popularizing astronomy, was created in 1941 under the leadership of Charles A. Federer and through the encouragement of Harlow Shapley. Unlike the AAVSO, "S&T" left the observatory simply because it outgrew the facilities.

CFA.09
Women and War Work

Peggy Kidwell (Smithsonian Institution)

An examination of the activities and attitudes of women at the Harvard Observatory during World War II helps to demonstrate how both the institution and the women's lives were affected—in representational and in special ways—by events that transformed the university and national science. One of the central issues and sources of tension was the degree to which military concerns would come to the fore. For example, Cecilia Payne-Gaposchkin resolved to resist an intrusion on her research, while Frances W. Wright turned to teaching navigation.

[Abstract supplied by the symposium organizers.]

CFA.10
The Langley Years

J.A. Eddy

Samuel Pierspost Langley (1834–1906) was probably the best known and surely the most creative, scientifically, of the Secretaries of the Smithsonian Institution. He was also the broadest, with active personal involvement in areas of science and technology ranging from aeronautics to zoology. He was first and foremost an astronomer who, with George Ellery Hale and Charles A. Young, was one of the American pioneers in astrophysics and the spectral study of the sun. These interests led him into uncharted domains of the infrared, to investigations of the absorption of light in the atmosphere, and to open the door to the study of the solar constant—a facet of his work that consumed the efforts of his successor. We shall review, briefly, Langley's pioneering accomplishments in solar studies and his turn-of-the-century influence on the Smithsonian Institution during the 19 years that he served there.

CFA.11
The Abbot Years

D.H. DeVorkin (Smithsonian/NASM)

Charles Greeley Abbot (b. 1872) was the second director of the Smithsonian Astrophysical Observatory (1906–1944) and the fourth secretary of the Smithsonian Institution (1928–1944). He was the second and last person to hold both posts simultaneously. Abbot extended Langley's solar constant studies from its specific determination, to the synoptic monitoring of its variations. He was able to establish high altitude mountain stations, support balloon flights, and even entertain the possibility of the use of rockets for studying the upper atmosphere as well as the solar constant during his long tenure. That Abbot was able to develop and maintain solar monitoring stations around the world which remained active for over forty years reveals as much about the character of the institution that supported him as it does about the amount and quality of sunlight the earth receives.

CFA.12
SAO on the Move

R.E. Doel (Princeton University/Smithsonian Institution)

The transfer of the Smithsonian Astrophysical Observatory (SAO) from Washington, D.C. to the campus of Harvard University in Cambridge, Massachusetts in 1955 was advantageous for both institutions: the SAO gained a viable program of astrophysical research, while Harvard gained new funds and new facilities. The decision by Donald Menzel, Harvard College Observatory director, to invite the SAO to Cambridge was motivated by three factors: Harvard's limited observing facilities, its past commitment to geophysical studies, and its intent to participate in the International Geophysical Year (IGY) research programs. This move had important consequences, from incorporating astrophysical and geophysical work, Harvard became identified, somewhat uniquely among American astronomical institutions, as a home for planetary and space astronomy.

© American Astronomical Society • Provided by the NASA Astrophysics Data System