The Sun from Skylab

Extraterrestrial observations of the Sun's upper atmosphere, performed by astronauts aboard Skylab, have proved an outstanding success. They have given us a new picture of the deep structure of the chromosphere and corona, and revealed how it changes with time. The experiments have also validated the need for men in space.

Dr John Eddy

The phenomenal success of the Apollo Telescope Mount (ATM) solar experiment on Skylab was more than a revelation to science; it was a vindication of a long and arduous program of research. The ATM was designed to study the Sun's atmosphere, and to ascertain whether the results obtained in the laboratory could be applied to the Sun. The solar atmosphere is divided into the chromosphere, the outer layers of the Sun, and the corona, the outermost layer. The chromosphere is the layer immediately above the photosphere, the relatively cool outer layer of the Sun. The corona is the outermost layer of the Sun, and is much hotter than the chromosphere. The ATM was designed to study the chromosphere and corona, and to ascertain whether the results obtained in the laboratory could be applied to the Sun.

The ATM experiment was a success. The results obtained on Skylab were consistent with the results obtained in the laboratory, and they confirmed the validity of the theory of solar structure. The ATM experiment was a success. The results obtained on Skylab were consistent with the results obtained in the laboratory, and they confirmed the validity of the theory of solar structure.

Figure 1. A set of X-ray images of the Sun obtained during the first six months of the Skylab mission. The images show the chromosphere and corona in different wavelengths. The X-ray images were obtained by the ATM X-ray spectrometer, which is located in the Earth's orbit. The X-ray images show the chromosphere and corona in different wavelengths. The X-ray images were obtained by the ATM X-ray spectrometer, which is located in the Earth's orbit. The X-ray images show the chromosphere and corona in different wavelengths. The X-ray images were obtained by the ATM X-ray spectrometer, which is located in the Earth's orbit.
best days, but patellar instruments which reach depletion of the corona's characteristics by relatively close angular resolution and show pictures more, because of the sky brightness, image the corona at its edges and present a challenge to the observer. The detailed structure of the outer corona, the transition region to the corona, and the corona's structure, all of which are of only a few minutes per year. The ATM coronographic images include the final design and align above 10 geographic latitude—allowing a revolutionizing chance to observe the outer corona with enhanced resolution. As with the other ATM instruments, the raw data is processed, and the resulting images are presented in a series of figures. Each of the images shows the outer corona with enhanced resolution. The ATM images provide a unique view of the outer corona, allowing a better understanding of the corona's characteristics and behavior.